

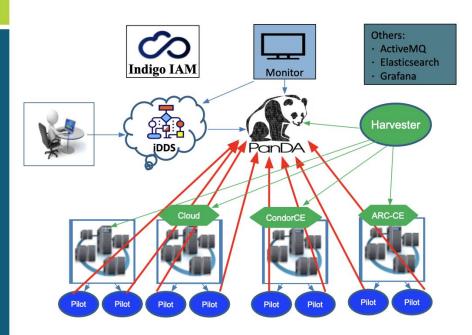
A Function-as-a-Task Workflow Management Approach with PanDA and iDDS

<u>Wen Guan¹, Fernando Harald Barreiro Megino², Kaushik De², Edward Karavakis¹, Fa-Hui Lin², Tadashi Maeno¹, Paul Nilsson¹, Torre Wenaus¹, Rui Zhang³, Xin Zhao¹, Zhaoyu Yang¹</u>

Brookhaven National Lab
 University of Texas at Arlington
 University of Wisconsin Madison

Mar, 2024

Distributed Computing with PanDA/iDDS



• Distributed Users

- Users from different universities/labs can run jobs on PanDA through a http service
- X509 or OIDC for authorization
- LHC ATLAS 170 sites and several thousand users

• Distributed Heterogeneous computing resources

- Diverse locations
- Different software (slurm,condor,pbs)
- Site differences will increase user complexity
- PanDA (Production and Distributed Analysis system): Distributed Workload Management
 - \circ \qquad General interface for users, one authentication for all sites
 - Integrate different resource providers(Grid, Cloud, k8s, HPC and so on), hide the diversities from users, large scale
- iDDS (intelligent Data Delivery Service): Workflow Management Orchestration
 - DAG (Directed Acyclic Graph), complex workflow
 - Async result delivery
- Has been in production in LHC ATLAS, Rubin Observatory and many other experiments.

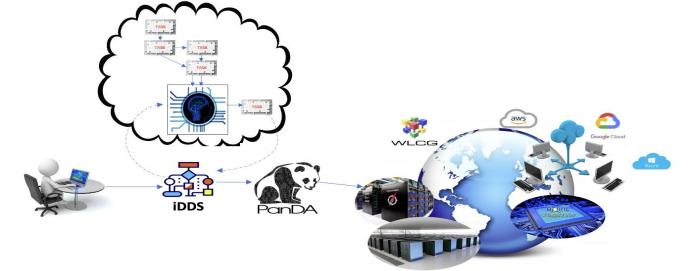
ACAT 2024

Distributed Workflow Management with PanDA/iDDS

- PanDA as an engine for large scale workload management
 - PanDA is powerful to schedule jobs to distributed heterogeneous resources
 - Large scale
 - Transparent to users for different computing resources
 - Smart workload routing
 - <u>CHEP2023 Talk: T. Maeno, et al. Utilizing Distributed</u> <u>Heterogeneous Computing with PanDA in ATLAS</u>

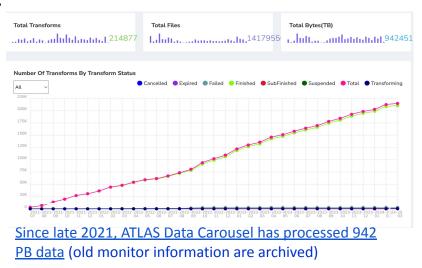
- iDDS orchestrates the workflow for automation
 - Directed Acyclic Graph (DAG) management.
 - Condition workflow and Loop workflow management
 - Collect results from previous tasks
 - Analyze the results with user predefined jobs
 - Generate new tasks/jobs based on the analyses

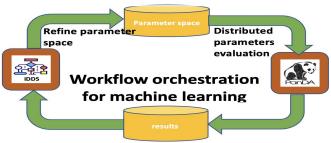
CHEP2023 Talk: W.Christian, et al. Distributed Machine Learning with PanDA and iDDS in ATLAS



Distributed Workflow Management Use Cases

- Started workflow integration in PanDA and iDDS for a long time, different use cases in production
 - Fine-grained Data Carousel for LHC ATLAS
 - DAG management for Rubin Observatory to sequence data processing
 - Distributed HyperParameter Optimization (HPO)
 - Monte Carlo Toy based Confidence Limits
 - Active Learning assisted technique to boost the parameter search in New Physics search space
 - Al-assisted Detector Design for **EIC** (currently working)
- Has involved processing a lot of data and different physics analysis
- Challenges for complex workflow management
 - Complicated to support different logical requirements in different use cases
 - Complicated for users to define different dependency logics
 - Eg. easy to make mistakes





Different Types of Workflow Management

Workflow Management

- Coordinate and orchestrate tasks and data
- Streamline operations into a workflow, to improve automation and efficiency

• Data flow based workflow

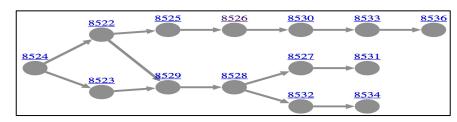
- Output of current task -> input of next task
- Easy to generalize and manage

Logics based workflow

- No data dependencies
- Different parameters or different functions are triggered based on the previous return value
 - Eg: Hyperparameter Optimization
- Different use cases can be very different
- Supported workflow description tools:
 - Common Workflow Language (CWL), snakemake,
- Easy to make mistakes between user requirements and system behaviors when a complicated logic is defined

(AF2)aN	0 + 510382/mc.MGH7EG_NNPDF30NLO_ttX_12_bb_dilep.py (AF2)aMC@NLO+MadSpin+H7 alternative signal sample for Run 2 tta(bb) analysis, 12 GeV mass, dilepton										events: 250000		
e830 T:	04 e7400 done	a875 done			r10724 running	r10726 <mark>register</mark>					p4109 register	submitted Produced even	<u>edit (saved)</u> ts: 220000
(AF2)aN	+ 510383/mc.MGH7EG_NNPDF30NLO_ttX_16_bb_dilep.py (AF2)aMC@NLO+MadSpin+H7 alternative signal sample for Run 2 tta(bb) analysis, 16 GeV mass, events: 250000 dilepton										1		
dileptoi													

Examples of data flow based workflow: Even Gen -> Simul -> Reco -> Deriv



Examples of A DAG workflow

A New Function-as-a-Task Workflow Management in PanDA and iDDS

- A new Function-as-a-Task Workflow Management framework is developed
- Python function as a task/job
 - More granular for scientific workloads
 - Complicated logics can be defined with python language
 - Easy for users with python to define workflows

• Workflow

- Manages tasks (functions) in groups
- Python source codes preparation for distributed processing
- General environments for all tasks (functions)

AsyncResult

 Employ messaging service to publish/receive results between function executor and submitter

@woi	ck(map_results=True)
def	<pre>optimize_work(opt_params):</pre>

With python decorator @work to convert a function to a PanDA task

@workflow

```
def optimize_workflow():
```

from optimize import evaluate_bdt, get_bayesian_optimizer_and_util

```
...
n_iterations, n_points_per_iteration = 10, 20
for i in range(n_iterations):
    points = {}
    group_kwargs = []
    for j in range(n_points_per_iteration):
        x_probe = bayesopt.suggest(util)
        u_id = get_unique_id_for_dict(x_probe)
        print('x_probe (%s): %s' % (u_id, x_probe))
        points[u_id] = {'kwargs': x_probe}
        group_kwargs.append(x_probe)
```

results = optimize_work(opt_params=params, group_kwargs=group_kwargs)
print("points: %s" % str(points))

The Workflow calls the task like a local function

Function-as-a-Task Workflow Management Schema

Workflow

- Source codes caching
- workflow as the basic unit to manage source codes
- Source codes in the workflow directory will be uploaded into the iDDS or PanDA http cache
- During running time, the source codes will be downloaded to the current running directory
- Running environment
 - Base environment (eg: cvmfs) + source codes caching
 - Base container + source codes caching
 - Container for user, ShuWei, Ye, 2024 ATLAS S&C

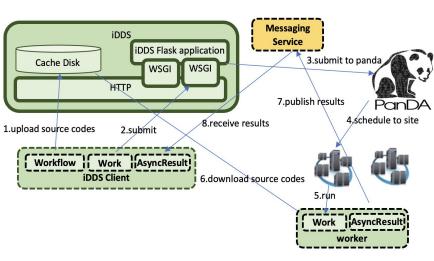
• Work

- Submit function as tasks/jobs to workload management system PanDA
- Load and run a function as a job at distributed sites
- List of parameters can be used to call a function, which will create a task with multiple jobs and every job uses item of the list of parameters

AsyncResults

- When a function finishes, the 'Work' executor will publish the result in a message
- \circ $\hfill The 'Work' at submission side will receive the result$
- iDDS also monitors the tasks/jobs submitted. It will publish messages to AsyncResult, to avoid

AsyncResult waiting for failed remote workers



Schema of how a workflow executes a function at remote distributed resources

Function-as-a-Task Workflow Management Advantages

- Source codes are managed transparently, no additional steps
- Support different ways to run user functions at distributed resources
 - With/without container
 - With base container + source codes caching, users don't need to build the container for a code update, the workflow will automatically update the source codes in the cache
 - For some experiments, different base containers are already provided and deployed on cvmfs. Users don't need to build personal containers
- Make use of the current PanDA structure and related middlewares, no additional requirements for sites
- Distributed resources, possible to large scale
- AsyncResults based on messaging service improves the efficiency

Example: Hyperparameter Optimization

• Apply Function-as-a-Task for hyperparameter optimization

• Example analysis

- ttH analysis (simulated events with Delphes)
- Boosted Decision Tree (BDT): <u>xgboost</u>
- Bayesian based hyperparameter optimization: <u>bayes_opt</u>

Base container

Alma9 Singularity container with installed xgboost, bayes_opt

Distributed tasks

- With one line python decorator '@work(map_results=True)' to convert local functions to distributed tasks
- Transparent for users to run function as remote tasks and collect results
- List of parameters is provided to generate multiple jobs in a task
- Singularity container is used as the base container

51	@work(map_results=True)
52 V	oer oprimize_worktopr_params, retmethou⊐vone, hist=rrue, savemouet=ratse, input_weight=None, **kwargs):
53	<pre>from optimize import evaluate_bdt, load_data</pre>
54	
55	data, label = load_data()
56	train, val = data
57	y_train_cat, y_val_cat = label
58	input_x = [train, val]
59	<pre>input_y = [y_train_cat, y_val_cat]</pre>
60	
61	ret = evaluate_bdt(input_x=input_x, input_y=input_y, opt_params=opt_params, retMethod=retMethod, hist=hist,
62	saveModel=saveModel, input weight=input weight, **kwargs)
63	return ret
79	<pre>bayesopt, util = get_bayesian_optimizer_and_util(optFunc, opt_params)</pre>
80	
81	n_iterations, n_points_per_iteration = 10, 20
82	<pre>for i in range(n_iterations):</pre>
83	print("Iteration %s" % i)
84	<pre>points = {}</pre>
85	group_kwargs = []
86	<pre>for j in range(n_points_per_iteration):</pre>
87	<pre>x_probe = bayesopt.suggest(util)</pre>
88	<pre>u_id = get_unique_id_for_dict(x_probe)</pre>
89	<pre>print('x_probe (%s): %s' % (u_id, x_probe))</pre>
90 91	points[u_id] = {'kwargs': x_probe} group kwargs.append(x probe)
91	group_kwargs.append(x_probe)
93	results = optimize_work(opt_params=params, opt_method=opt_method, hist=True, saveModel=False, input_weight=None,
94	retMethod=opt_method, group_kwargs=group_kwargs)
95	<pre>print("points: %s" % str(points))</pre>
96 97	for u_id in points:
98	
99	<pre>print('ret :%s, kwargs: %s' % (points[u_id]['ret'], points[u_id]['kwargs']))</pre>
100	<pre>bayesopt.register(points[u_id]['kwargs'], points[u_id]['ret'])</pre>
101 102	<pre>print(bayesopt.res)</pre>
103	p = bayesopt.max
104	p bujeoprimak prince bujeoprimak as a py
init	<pre>env = 'singularity exec /afs/cern.ch/user/w/wguan/workdisk/iDDS/test/eic/idds ml al9.simg '</pre>

init_env = 'singularity exec /afs/cern.ch/user/w/wguan/workdisk/iDDS/test/eic/idds_ml_al9.simg

wf = Workflow(func=optimize_workflow, service='idds', init_env=init_env)

With python decorator to transparently convert function to distributed tasks and collect the results transparently. $_9$ <u>sources</u>

Example: Hyperparameter Optimization Test Examples

• Test workflows with different iterations

- Every iteration is mapped to one panda task
- In every iteration, multiple hyperparameters are generated. As a result, multiple jobs are generated in a task

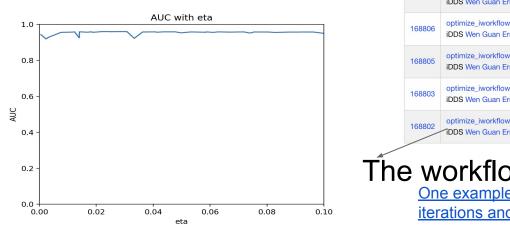
Workflow: Group tasks together

request id	username 🍦	workflow status	graph 🍦	workflow name	•	created on ¢ (UTC)	total tasks	tasks	transform type	total files	released files	unreleased files	finished files	1
6128	Wen Guan	Finished	plot	optimize_iworkflow.optimize_workflow_2024_03_06/	13_18_47	2024-03- 06 13:18:47	11	Finished(10)	N/A	0	0	0	100%	
6127	Wen Guan	Finished	plot	optimize_iworkflow.optimize_workflow_2024_03_06_	13_18_41	2024-03- 06 13:18:45	11	Finished(10)	N/A	0	0	0	100%	
6126	Wen Guan	/en Guan Finished plot optimize_iworkflow.optimize_workflow_2024_03_06_					6	Finished(5)	N/A	0	0	0	100%	
6125	Wen Guan	Finished	plot	optimize_iworkflow.optimize_workflow_2024_03_06_	08_54_32	2024-03- 06 08:54:36	3	Finished(2)	N/A	0	0	0	100%	
tasks, so	rted by jeditas	skid-desc												
ID Parent Task name TaskType/ProcessingType Campaign Group User Errors Logged status					Task status Nfiles	Input file Nlost () Nfinish () Nfail ()	%	Iterations: this workflow has 10						
168807	optimize_iworkflow.optimize_iworkflow.optimize_work_2024_03_06_11_12_39_6125_47808 iDDS Wen Guan Errors				done 20	20 100%	j	teratio	ns					
168804	optimize_iworkflow.optimize_iworkflow.optimize_work_2024_03_06_08_57_10_6125_47805 iDDS Wen Guan Errors				done 20	20 100%		Jobs per iteration: this iteration						
168801	optimize_iworkflow.optimize_workflow_2024_03_06_08_54_32_6125 iDDS Wen Guan Errors					1 100%		has 20 jobs						

Example: Hyperparameter Optimization Test Results The work function

• Function-as-a-Task

- In the example, the workflow is also converted to a remote task. However, the workflow can also run locally
- Not many events, improvements based on 'eta' (learning rate) is small



ACAT 2024

panda-doma.cern.ch/tasks/?idds_request_id=6126 🚯 immo_habitat_laf... 🚳 CentOS 8 : CUDA... 🚱 Persistent screen... Weka Client & Mo... iddsse ▲ iDDS monitor ÷26 foncia Input files Task Task name ID Nlost 0 TaskType/ProcessingType Campaign Group User Errors status Parent Nfinish % Logged status Nfiles Nfail % optimize iworkflow.optimize iworkflow.optimize work 2024 03 06 11 44 36 6126 47811 done 168809 20 100% iDDS Wen Guan Errors optimize_iworkflow.optimize_iworkflow.optimize_work_2024_03_06_11_27_56_6126_47810 done 168808 20 100% iDDS Wen Guan Errors optimize iworkflow.optimize iworkflow.optimize work 2024 03 06 11 12 39 6126 47809 done 20 100% iDDS Wen Guan Errors 20 optimize_iworkflow.optimize_iworkflow.optimize_work_2024_03_06_09_14_42_6126_47807 done 20 100% iDDS Wen Guan Errors 20 optimize iworkflow.optimize iworkflow.optimize work 2024 03 06 08 57 15 6126 47806 done 20 100% iDDS Wen Guan Errors optimize iworkflow.optimize workflow 2024 03 06 08 55 01 6126 done 1 100% **IDDS Wen Guan Errors**

The workflow function One example workflow: (1) workflow function; (2) 5

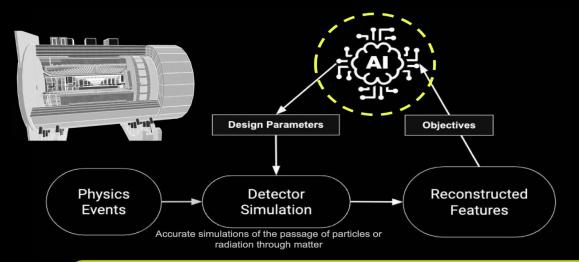
iterations and 20 parallel jobs per iteration

Best params: {'target': 0.960055699094351, 'params': {'alpha': 0.23406035151804216, 'colsample_bytree': 0.579042534809806, 'eta': 0.028600368999834338, 'gamma': 0 .23818222147295043, 'max_delta_step': 0.8490976659073024, 'max_depth': 19.211553258551916, 'min_child_weight': 70.89679426305557, 'scale_pos_weight': 0.4108082725 8102803, 'seed': 47.50122115129428, 'subsample': 0.9416281815903255}}

Next Step: Apply Function-as-a-Task workflow management for Al-assisted Detector Design for EIC (AID2E)

<u>AI-Assisted Detector Design</u>

The Al-assisted design embraces all the main steps of the sim/reco/analysis pipeline...



- Benefits from rapid turnaround time from simulations to analysis of high-level reconstructed observables
- The EIC SW stack offers multiple features that facilitate AI-assisted design (e.g., modularity of simulation, reconstruction, analysis, easy access to design parameters, automated checks, etc.)
- Leverages heterogeneous computing

Provide a framework for an holistic optimization of the sub-detector system A complex problem with (i) multiple design parameters, driven by (ii) multiple objectives (e.g., detector response, physics-driven, costs) subject to (iii) constraints

Those at EIC can be the first large-scale experiments ever realized with the assistance of AI

Cristiano Fanelli

Next step: What to do in AID2E

• Objectives

- Employ PanDA/iDDS to manage AI-assisted Detector Design parameter optimization tasks to distributed resources
- Large scale distributed machine learning
- Fine-grained automatization of multi-step iterative workflows

Al-assisted parameter optimization

- Many Parameters
- Multiple Objectives
 - Multiple Objective Optimization
 - Multiple Objective Bayesian Optimization (MOBO)

• Function-as-a-Task workflow structure

- It will simplify the integration between PanDA/iDDS and AID2E
- PanDA will be able to provide a platform for large scale distributed computing
- iDDS will convert AID2E functions to tasks, with AsyncResult to achieve good efficiency

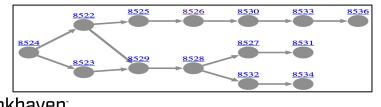
Conclusion

- PanDA/iDDS has supported complex workflow management for a long time
 - Different use cases are supported in production in different experiments
 - Complex workflow logics require an easy way to define the workflows
- A python Function-as-a-Task workflow structure is developed
 - With python functions to define the workflow steps
 - With python decorators to convert functions to distributed tasks
- It can easily convert a Bayesian hyperparameter optimization program to a distributed workflow
 - Examples has achieved good automation and efficiency
- Next step we will apply it to AI-assisted Detector Design for EIC, to achieve Multiple Objectives Bayesian Optimization
- In the future we will improve the structure to support more use cases and platforms

Workflow Management with PanDA and iDDS

- Fine-grained Data Carousel for LHC ATLAS enables processing in proper granularities and grouping to efficiently use disk storage
 - In production since 2020
 - From 2021, has processed 942 PB data (old processing information has been archived)
- DAG management for Rubin Observatory sequences data processing based on dependencies since 2020
 - Largely stable since Oct 2021
 - DP0.2 (Phase 2 of Data Preview 0) campaign successfully from the beginning of 2022 to June 2022.
 - o From Jan-Jun 2022. Workflows: 351, tasks: 2732, jobs: 16483753
 - HSC (Hyper-Suprime Cam) processing ongoing.
 - o Started from Jun 2022

National Laborator\



Since late 2020 in Rubin Observatory, iDDS-PanDA within the LSST framework has processed more than 11000 tasks.

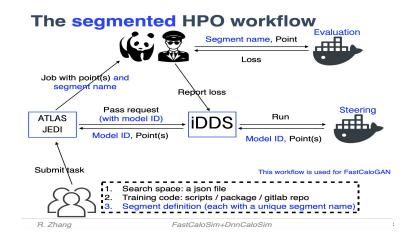
Distributed HyperParameter Optimization (HPO)

- Provide a full-automated platform for HPO on top of distributed heterogeneous computing resources
 - > Hyperparameters are generated centrally in iDDS
 - PanDA schedules ML training jobs to distributed heterogeneous GPUs to evaluate the performance of the hyperparameter
 - iDDS orchestrates to collects the results and search new hyperparameters based on the previous results
- Applied for ATLAS FastCaloGAN
 - The HPO service is in production for FastCaloGAN, part of the production ATLAS fast simulation AtlFast3

With hyperparameters to tune various models targeting different particles and slices

- Distributed GPUs, HPCs, commercial cloud
- Ref: <u>FastCaloGAN</u>, <u>AML workshop</u>, <u>IML</u>, <u>ATLAS S&C week</u>
- Used in ATLAS, however not specific to ATLAS
- Ref: <u>CHEP2023</u>

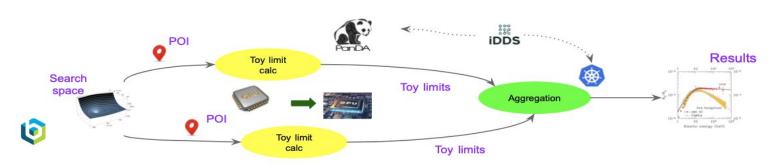
R. Zhang 5th ATLAS Machine Learning Workshop

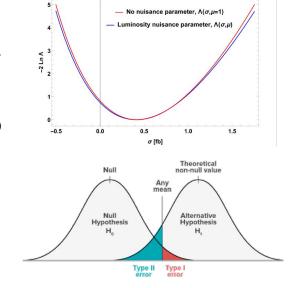


Monte Carlo Toy based Confidence Limits

* Confidence Limits in Analyses

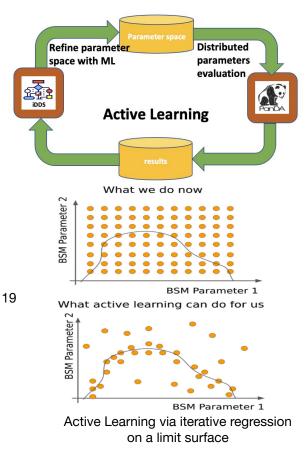
- Exclude some ranges of relevant phase space for future processing
- Show that obtained results are meaningfully different from what could have obtained by chance
- An Monte Carlo (MC) Toy based confidence limits workflow * requires multiple steps of grid scans, where the current step depends on the previous steps
- Automate the workflow of Toy limits calculation and * aggregation
 - Point of Interest (POI) generation based on the search space and results aggregation to generate new POIs in iDDS 18
 - Distributed Toy limits calculation to distributed resources with PanDA
 - Ref: CHEP2023





Active Learning

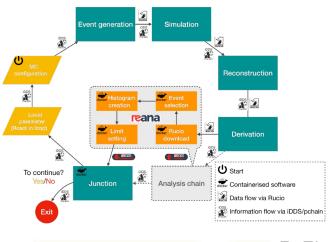
- An iterative ML assisted technique to boost the parameter search in New Physics search space
 - The Active Learning technique we are applying was developed by Kyle Cranmer et al, "Active Learning for Excursion Set Estimation", ACAT 2019
 - Redefine the parameter space for the next iteration based on the previous results with ML, more efficient than a single-step processing
 - Optimize the parameter space points for evaluation to maximise the information gain from each evaluation
 - Distributed computing resources for parameter evaluation
- Automate the multi-steps processing chain with PanDA and iDDS for ATLAS
 - Integrated REANA (Reusable Analyses) with PanDA for learning processing
 - iDDS orchestrates the workflow to trigger new tasks/jobs based on the previous results

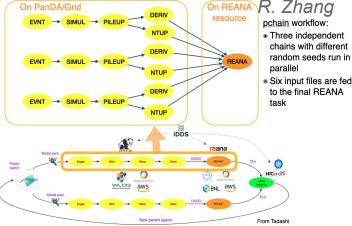


Active Learning for ATLAS

- Applied the Active Learning service in the H
 - \rightarrow ZZ_d \rightarrow 4 ℓ dark sector analysis
 - Avoids a complex interpolation scheme, costly in development and validation
 - Apply Bayesian Optimization to refine the parameter space
 - Greater efficiency, scalability, automation enables a wider parameter search (instead of 1D, 2D or even 4D on large scale resources) and improved physics result
 - Has demonstrated active learning driven re-analysis for dark sector analysis
 - > ATLAS PUB NOTE in progress

CHEP2023 Talk: C. Waber, et al. An Active Learning application in a dark matter search with ATLAS PanDA and iDDS





ACAT 2024

Thanks

