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Why Fast Shower Simulation?
HL-LHC        huge computing resources

MC simulation account for ～50%（dominated by shower simulation）

Fast shower simulation: help overcome the computational challenge

ATLAS Software and Computing HL-LHC Roadmap ATLAS 2017 number
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https://cds.cern.ch/record/2802918/files/LHCC-G-182.pdf
https://cds.cern.ch/record/2644515/files/ATL-SOFT-PROC-2018-009.pdf


Fast Simulation

Geant4: incoming particle  physics process in the detector  energy 
deposition 


accurate results, but time-consuming

complex geometry

number of secondary particles grows quickly


Fast simulation: incoming particle  energy deposition) 

parameterization 

GAN (ATLAS) 
……


→ →

→

                                 
Geant4

fast simulation

QC is an alternative to classical computing 
QC + GAN: the potential to outperform classical GAN
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Quantum GAN

image source

 Two versions of quantum GAN

quantum generator + classical discriminator (choose the hybrid version for our study)

quantum generator + quantum discriminator


 NISQ (noisy intermediate-scale quantum era)

noisy and unstable qubit

number of qubits: [~10, ~ ]102
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https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f


CLIC Calorimeter images: energy deposits from electrons

3D ( ): too large for the current quantum device


downsampled to 8 pixels 

downsampled to 64 pixels ( )
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https://zenodo.org/records/3603122


Average Shower Image (PDF)
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input

Generator Model
Input states: 

Variational quantum circuits:    

Amplitude decoding: n qubits   amplitudes   PDF values


8 pixels: 3 qubits

64 pixels: 6 qubits
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Training: Cross Entropy vs Wasserstein Loss
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8 pixels 64 pixels

Training with Wasserstein distance is more stable than cross-entropy loss

Hyper-parameter optimization could help when using cross-entropy loss


time-consuming …

training fluctuates for the data with 64 pixels



Performance (Ideal Simulator)
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Generated data are consistent with Geant4.




Impact of Noise: Training (8 pixels)
Consider the impact of readout error and double qubit gate (CZ) error


line: mean value

band: fluctuation due to the initialization

noise (<2%) could improve the training


readout error CZ error
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Noise level at the inference stage may change

stable performance when the change is small


Impact of Noise: Inference (8 pixels)
no noise
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CZ error：2%

change of noise level



Results on the Hardware (8 pixels)
Test the model on the hardware (Xiaohong: 骁鸿)


CZ error: 2%

readout error: 2%


training process performance
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Pixel-wise Energy Distribution
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input angle decoding

Generator Model
Input states:    

Variational quantum circuits:    

Angle decoding: n qubits  n angles 


8 pixels: 8 qubits
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Overall Performance (Ideal Simulator)

average shower imagetotal energy

Consistent distribution between the generated data and Geant4
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Pixel-wise Energy Distribution (Ideal Simulator)
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Correlation coefficients in generated data is less than those in Geant4

need further investigations

Correlation Matrix (Ideal Simulator)

generated data Geant4
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Average shower image 
Quantum GAN could generate images consistent with Geant4

Training with noise (<2%) improves the performance

The model inference is stable against noise (<2%) 

Successfully running the model on the hardware (Xiaohong) 


Pixel-wise energy distribution: 
In general, the generated data is consistent with Geant4

The correlation matrix needs further investigations


Summary
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backup
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ideal simulator hardware
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