Quantum GAN for **Fast Shower Simulation**

Xiaozhong Huang, Weidong Li

IHEP

ACAT 2024 Conference 2024/3/11

Why Fast Shower Simulation?

HL-LHC huge computing resources Fast shower simulation: help overcome the computational challenge

 \odot MC simulation account for \sim 50% (dominated by shower simulation)

Wall Clock consumption per workflow

Fast Simulation

deposition

accurate results, but time-consuming

- complex geometry
- number of secondary particles grows quickly

$^{\odot}$ Fast simulation: incoming particle \rightarrow energy deposition) parameterization GAN (ATLAS) **.**

QC is an alternative to classical computing QC + GAN: the potential to outperform classical GAN

^{\subseteq} Geant4: incoming particle \rightarrow physics process in the detector \rightarrow energy Geant4

fast simulation

Quantum GAN

- Two versions of quantum GAN

 - quantum generator + quantum discriminator
- Solution NISQ (noisy intermediate-scale quantum era) noisy and unstable qubit
 - \sim number of qubits: [~10, ~10²]

<u>quantum generator + classical discriminator</u> (choose the hybrid version for our study)

image source

I: Input for Generator

Data Sample

Second CLIC Calorimeter images: energy deposits from electrons \odot 3D (51 \times 51 \times 25): too large for the current quantum device Gownsampled to 8 pixels

 $^{\odot}$ downsampled to 64 pixels (8 \times 8)

Average Shower Image (PDF)

Generator Model

- Variational quantum circuits: *G*(*θ*) | 0 \rangle ⊗^{*n*} → | ψ \rangle
- Solution \mathbb{S} Amplitude decoding: n qubits $\rightarrow 2^n$ amplitudes $\rightarrow 2^n$ PDF values
 - 8 pixels: 3 qubits

Training: Cross Entropy vs Wasserstein Loss

- - Image: Second secon

Training with Wasserstein distance is more stable than cross-entropy loss

Generated data are consistent with Geant4.

Performance (Ideal Simulator)

Impact of Noise: Training (8 pixels) Consider the impact of readout error and double qubit gate (CZ) error

- See line: mean value
- band: fluctuation due to the initialization
- noise (<2%) could improve the training</p>

Impact of Noise: Inference (8 pixels)

Results on the Hardware (8 pixels)

Section 10 Test the model on the hardware (Xiaohong: 骁鸿)

- GZ error: 2%
- readout error: 2%

training process

iaohong: 骁鸿)

12

Pixel-wise Energy Distribution

Generator Model

- \subseteq Input states: $R_{Y}(\Omega) | 0 \rangle^{\bigotimes n}$
- \mathbb{S} Variational quantum circuits: $G(\theta)R_{Y}(\Omega)|0\rangle^{\bigotimes n} \rightarrow |\psi\rangle$
- Solution Angle decoding: n qubits → n angles
 Solution 8 pixels: 8 qubits

$R_Y(\Omega) | 0 \rangle^{\bigotimes n} \to | \psi \rangle$ les

Overall Performance (Ideal Simulator)

Consistent distribution between the generated data and Geant4

Pixel-wise Energy Distribution (Ideal Simulator)

Correlation Matrix (Ideal Simulator)

Correlation coefficients in generated data is less than those in Geant4 need further investigations

Summary

Average shower image

- Quantum GAN could generate images consistent with Geant4 \bigcirc Training with noise (<2%) improves the performance Solution ■ The model inference is stable against noise (<2%)</p> Successfully running the model on the hardware (Xiaohong)

Pixel-wise energy distribution:

In general, the generated data is consistent with Geant4 The correlation matrix needs further investigations

backup

