

WILLKOMMEN!

ADVANCING IMAGE CLASSIFICATION: INTEGRATING NAQSS ENCODING WITH HYBRID QUANTUM-CLASSICAL PQC MODELS VIA INTEL QUANTUM SDK

CONTENTS

- Introduction
- Quantum in Fake Art
- Quantum Machine Learning
- Quantum Image Representation
- Implementation
- Results

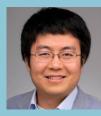
TEAM

Digvijaysinh Ajarekar Student, HPC-QC, Deggendorf Institute of Technology

2nd Rank Intel Quantum Challenge Best Poster Presentation @FUT3CH Symposium 2024 Abstract Accepted @Quantum Matter 2024, San Sabastian, Spain

Suhaib Al-Rousan Student, HPC-QC, Deggendorf Institute of Technology Research Assistant, Quantum Applications and Research Laboratory (QAR-Lab), LMU, Munich

2nd Rank Intel Quantum Challenge Best Poster Presentation @FUT3CH Symposium 2024 Abstract Accepted @Quantum Matter 2024, San Sabastian, Spain


Research

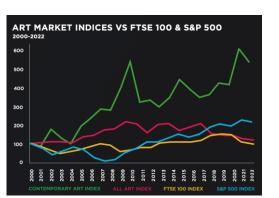
- Quantum Image Classification for Fake Art Identification
- Quantum Computational Fluid Dynamics with Intel Quantum SDK

Prof. Dr. Helena Liebelt Director

Institute of Future Technologies, Deggendorf Institute of Technology

Prof. Dr. Rui Li Co-Founder Institute of Future Technologies, Deggendorf Institute of Technology

The art world grapples with the issue of **art forgery**, where replicas are created and passed off as genuine works. This can lead to significant **financial losses** and **erosion of trust** in the art market.


- Growing Luxury Asset
- Fake Art threat to Global Art Market

Traditional Methods,

- Require expertise
- Subjective
- Time Consuming

AI to the Rescue,

- Increased Accuracy
- Efficient

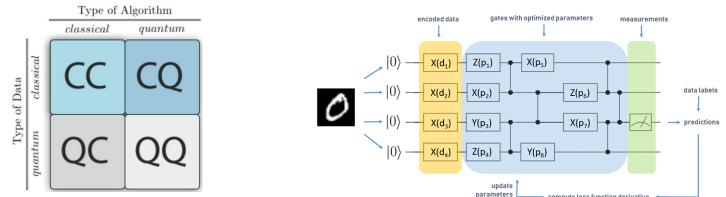
Model	No. of Layer	(Million)	Size
AlexNet	8	60	-
VGGNet-16	23	138	528 MB
VGGNet-19	26	143	549 MB
Inception-V1	27	7	-
Inception-V3	42	27	93 MB
ResNet-152	152	50	132 MB
ResNet-101	101	44	171 MB
InceptionResNetV2	572	55	215 MB
MobileNet-V1	28	4.2	16 MB
MobileNet-V2	28	3.37	14 MB
EfficientNet B0	-	5	-

Parameters

These concepts can be

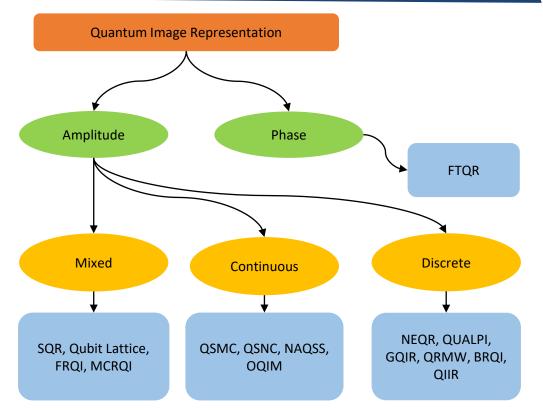
Applied to Fake Currency Detection and other authenticity detection tasks.

Quantum Computing provides **exponential speed** up with linear combination of all the possible basis states in superposition.

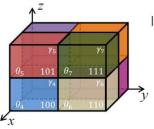

QML: MARRAIGE OF POWER HOUSES

Quantum machine learning represents the potent amalgamation of quantum computing and machine learning.

Quantum computers possess the ability to solve problems that are too intricate for classical computers, while machine learning algorithms can leverage the unique properties of quantum computers to achieve superior performance.

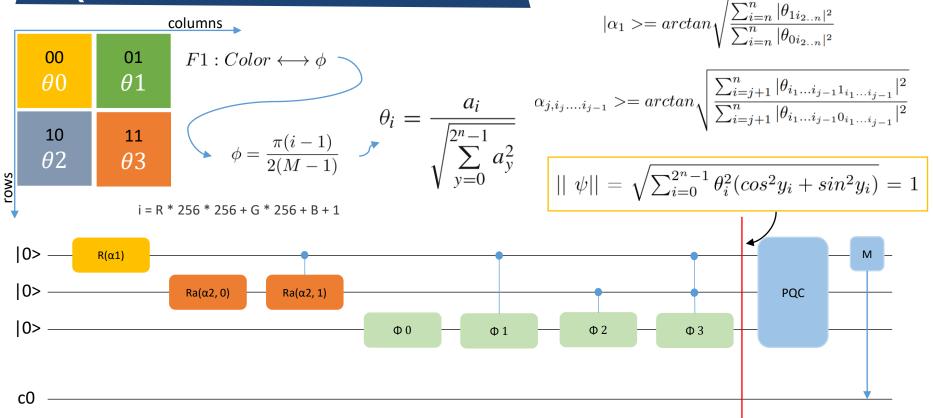


compute loss function derivative



QUANTUM IMAGE REPRESENTION

QIR	Required qubits	QIR	Required qubits
FRQI	2 <i>n</i> +1	GNEQR	n + 8 [G]/ n + 10 [C]
NAQSS	n+1	NCQI	2n + 3q
QSMC& QSNC	4n	BRQI	n+3 [G]/ $3n+9$ [C]
SQR	2n	QRCI	2n + 3
QUALPI	2n+q	QRMMI	2n+t+q
NEQR		QRMW	2n+b+q
CQIR	2n+m	OCQR	2n+4q
MCQI	2 <i>n</i> +3	FRQCI	6 <i>n</i>
INEQR	2n + 8 [G]/	QMCR	2n + 3q
	2 <i>n</i> +10 [C]		
IFRQI	2n+p	QBIR	2 <i>n</i>
OQIM	2 <i>n</i> +2	QIIR	2n+2q+c
DQRCI	2 <i>n</i> +9	-	-


Note: "G" represents grayscale image, "C" represents color image.

$$\begin{split} |l\rangle &= \theta_0 |000\rangle \otimes (\cos \gamma_0 |0\rangle + \sin \gamma_0 |1\rangle) \\ &+ \theta_1 |001\rangle \otimes (\cos \gamma_1 |0\rangle + \sin \gamma_1 |1\rangle) \\ &+ \theta_2 |010\rangle \otimes (\cos \gamma_2 |0\rangle + \sin \gamma_2 |1\rangle) \\ &+ \theta_3 |011\rangle \otimes (\cos \gamma_3 |0\rangle + \sin \gamma_3 |1\rangle) \\ &+ \theta_4 |100\rangle \otimes (\cos \gamma_4 |0\rangle + \sin \gamma_4 |1\rangle) \\ &+ \theta_5 |101\rangle \otimes (\cos \gamma_5 |0\rangle + \sin \gamma_5 |1\rangle) \\ &+ \theta_6 |110\rangle \otimes (\cos \gamma_6 |0\rangle + \sin \gamma_6 |1\rangle) \\ &+ \theta_7 |111\rangle \otimes (\cos \gamma_7 |0\rangle + \sin \gamma_7 |1\rangle) \end{split}$$

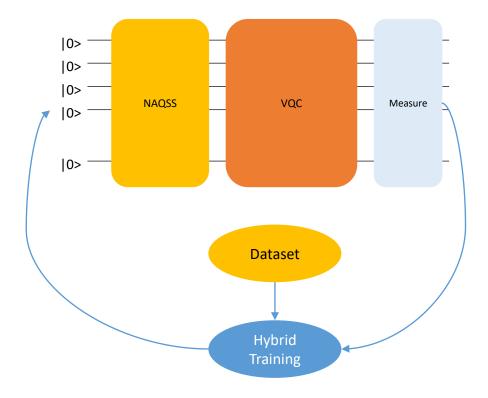
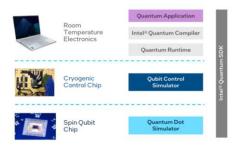
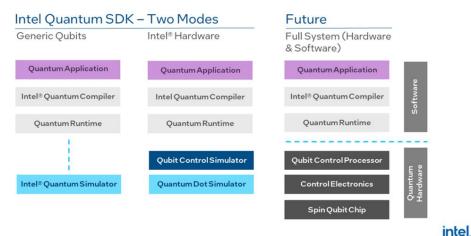

NAQSS

IMAGE CLASSIFICATION WITH NAQSS AND QNN

Algorithm

- 1. Data Preprocessing and transformations on the Images.
- 2. Encode Image into Quantum Circuit using NAQSS implementation.
- 3. Pass the state to QNN
- 4. Measure the Qubits
- 5. Get Loss and Gradients with Parameter Shift Rule
- 6. Update the Parameters
- Repeat step 2 6 for all the images in dataset.




The Intel[®] Quantum SDK is a complete quantum computing stack in simulation. It includes:

intel

- An intuitive user interface
- A compiler toolchain
- A quantum runtime environment optimized for running hybrid quantum-classical algorithms
- o A choice of qubit simulation back ends

Intel's Full-Stack Approach to Quantum Computing

Intel® Quantum SDK

IMAGE CLASSIFICATION WITH NAQSS AND QNN

Circuit for QBB in quantum_kernel - 'arbitaryState'

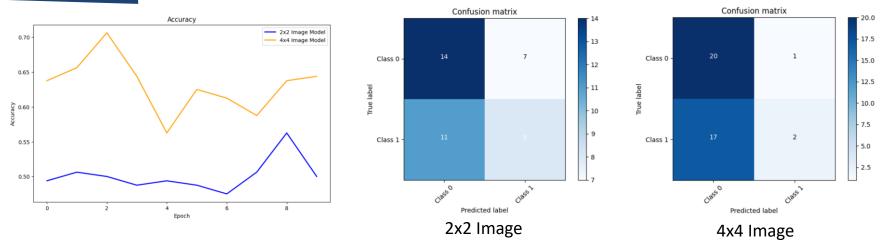
Circuit for QBB in quantum_kernel - 'qnn'

|qid_0> : - RX(weights[0]) ---- RY(weights[0]) ---- 0 ----- X ----| | |qid_1> : - RX(weights[1]) ---- RY(weights[1]) ---- X ---- 0 ---- | ----| | |qid_2> : - RX(weights[2]) ----- RY(weights[2]) ----- X ---- 0 ----

Circuit for QBB in quantum_kernel - 'prepare'

|QReg_0> : - PrepZ ---- PrepZ ---- PrepZ ----

|QReg_1> : - PrepZ ---- PrepZ ---- PrepZ ----


|QReg_2> : - PrepZ ---- PrepZ ---- PrepZ ----

Circuit for QBB in quantum_kernel - 'measure'

|QReg_0> : - MeasZ(CReg[0]) ---

RESULTS

Model	lmage Size	Epochs	Parameters	Accuracy
Quantum	2x2	10	90	51%
Quantum	4x4	10	70	64.5%

VIELEN DANK

CONTACT:

digvijaysinh.ajarerekar@stud.th-deg.de

suhaib.al-rousan@stud.th-deg.de

helena.liebelt@th-deg.de

rui.li@th-deg.de

