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We need Faster simulation frameworks!

Event simulation is a
non-negligible fraction of the
total projected CPU need

Faster simulation frameworks
are a part of the solution to the
computing challenges posed by
the HL-LHC era

Machine learning is expected to
provide both the speed and the
accuracy we need
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We propose to go end-to-

Main idea: going directly from
the generator output objects to
the high level analysis objects
(jets, muons ...)!

We want something:

Fast(er): reached ~kHz!

e Not analysis specific

e Depending on Gen (not just
a generic event but the
event)

Physics Process Detector Simulation
Generator (GEANT4 based)
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We select particle jets as our benchmark

Tagger correlations by flavour

From generator-level jets to analysis level

Build pseudo-realistic dataset with Pythia and
physically reasonable response functions

6 generator inputs:
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Kinematic, flavour, mass, N muons in jet o ~
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16 high-level targets: > &
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Kinematic, mass, b/c-taggers, energy fractions, secondary vertices ... o
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6 different metrics to evaluate each model: G O

b-tagging c-tagging
Wasserstein, KS, Covariance Matching, Fréchet, Area Between ROC, c2st



Normalizing Flows are the backbone of our approach!

We learn an invertible
transformation, taking us
from data x to noise z

Once f has been found we
can invert it, start from
noise and sample new data
from the unknown PDF!
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Discrete flows use a series of discrete functions

Each model is made up of
multiple px (%)
transformation blocks

This gives us an expressive f f \
final transformation with T \ L\ /
good correlations ”

between variables \ /

Affine transform: pz(z) A

T(zi; hi) = iz; + Bi



Continuous flows learn a vector field!

We learn a single
transformation parametrized
by t, and then we integrate
on it to get the datal

px(x)

f(2) :z—l—/Oldtvt

AT T

flz)=z+ /10 dtv

Problem: pz(z)
How do we learn v?

:

Flow Matching


https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

Continuous flows are the best class of models

Heatmap of Models and Metrics
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Generation Rate (kHz)

Speed comparison shows promising results
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Counts

Flow/Target

Counts

Flow/Target

Good convergence achieved on 1d and correlations
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The input information is correctly taken into account
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Counts

Flow/Target

Counts

Flow/Target

The performance is conserved on other processes (no retrain)!
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Increasing the size of a dataset

Method 1 — ONE-TO-ONE EVENT SIMULATION

The generation uses a fraction of the CPU
resources compared to conventional

Given ~kHz per object, the generator could be a
bottleneck

GEN >
GEN >
GEN >

GEN >
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Increasing the size of a dataset

Method 1 — ONE-TO-ONE EVENT SIMULATION

The generation uses a fraction of the CPU
resources compared to conventional

Given ~kHz per object, the generator could be a

bottleneck

GEN
GEN

GEN
GEN

Y

Method 2 — OVERSAMPLING

Simulate multiple SIM events using the same GEN
event as input

Need to handle correlations!

GEN

14



Oversampling: statistical treatment

EVENT-1 EVENT-2 EVENT-

N = oversampling factor

EVENT-1 EVENT-2 EVENT-3

1/N x + 1/N x + .. +1/N x

Oversampling — the final histogram is
given by the weighted sum of
sub-histograms filled with the
distributions of events sharing the same
GEN

Note: the final uncertainty is larger than r

just filling the histogram N more times 15
Final Histogram




Results on pseudo-analysis of W mass
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Conclusions

Normalizing Flows are a powerful tool for HEP end-to-end
simulation, with several orders of magnitude of speed-up

If we generate fast enough, we can use oversampling to reduce
the uncertainties of the sample!

Paper here: https://arxiv.org/abs/2402.13684

Repo here: https://github.com/francesco-vaselli/FlowSim

If you have any questions, get in touch!

francesco.vaselli@cern.ch
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Backup

timing table

flow details, loss
oversampling details
variables list

metrics details
training on more data
more plots

Flow matching
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Time estimates

Table 2: Comparison of millions of events produced per day on a single 4 GPU computing

node in different scenarios and their ratio to a conventional simulation scenario taking

20 seconds per event.

Millions of events per day on a HPC Node

Ratio to Conventional sim

Generator Gen time Fold | Conventional Object sampling speed [kHz] | Object sampling speed [kHz]
s/event  size | (20s/event) 1 5 10 50 100 1 5 10 50 100

Existing 0 i 0.138 173 86.4 172.8 864.0 1728.0 | 125 625 1250 6250 12500
Simple 0.02 1 0.138 154 532 76.8 119.2 128.0 | 111 385 556 863 927
10 0.138 17.1 81.3 153.6 531.7 768.0 | 123 588 1111 3847 5556

Average 1 1 0.132 24 2.7 2.7 2.8 28| 18 20 21 21 21
10 0.138 10.6 209 23.8 26.8 272 | 77 152 173 195 198

Accurate 20 1 0.069 0.14 0.14 0.14 0.14 0.14 2 2 2 2 2
and slow 10 0.126 1.28 14 1.4 1.4 14| 10 11 11 11 11
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Flow details and loss

dz

px(x) = p.(f(x)) det —

Jacobian for
Volume
Correction

log(pz(x)) = log(p.(f " (x))) + log (det Jy-1(x))

Invertible
transform

L(¢) = —E,: o [log(p: (' (x; ¢))) + log (det T -1 (x; ¢))]

where gb are the parameters of f(z)

20



see https://arxiv.org/abs/2210.02747
and https://arxiv.org/abs/2302.00482

Flow Matching as a solution

Learn vector field u,
approximation of v

u is the field going from noise
to data under a Gaussian
assumption


https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

see https://arxiv.org/abs/2210.02747
and https://arxiv.org/abs/2302.00482

Flow Matching as a solution

t=0 - > =N 0,1
Learn vector field u, p(2) =N(0,1)

approximation of v t=1 -p(2) = N(X, Ompin )

u is the field going from noise
to data under a Gaussian
assumption
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https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

see https://arxiv.org/abs/2210.02747
and https://arxiv.org/abs/2302.00482

Flow Matching as a solution

Learn vector field u,
approximation of v

u is the field going from noise
to data under a Gaussian
assumption

t=0 -oeeeeeee -p(@) =N(0,1)

=1 - p@) = NX, Omin )

pe(z|z) = N (2|tx, (tomin — t + 1)?),

r— (1 — opin)2
1 — (1 — O-min)t7

ug(z|r) =

23


https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

see https://arxiv.org/abs/2210.02747
and https://arxiv.org/abs/2302.00482

Flow Matching as a solution

Learn vector field u,
approximation of v

u is the field going from noise
to data under a Gaussian
assumption

y = NN(X)
Loss = (u - y)**2
Simple regression!

t=0 -oeeeeeee -p(@) =N(0,1)

=1 - p@) = NX, Omin )

pe(z|z) = N (2|tx, (tomin — t + 1)?),

r— (1 — opin)2
1 — (1 — O-min)t,

ug(z|r) =

24
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Losses
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Oversampling: statistical treatment

Non-oversampled case

e wstatistical weight associated with the MC event
e Forthe i-th bin of an histogram, the probability of being in this bin and the associated
uncertainty are

2
Zijil’l wj o \/Zijln w]

O; —
Zszsample Wi

Di =
Zk€sample W,

Oversampled case: A fold is the set of RECO events sharing the same GEN

fold
D j€bin 2_lcfoldebin Wil _ 2 jebin 2lefoldebin Wit/ N _ 2 jebin WiP;

2’:

N Zstample Wi ijEsample Wi, Zszsample Wi

S a0

Zk€sample W

o)
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Variables list

Table 1: The two datasets used in this work: one with 6 input generator-level variables

and 5 target reco-level variables; an extended one with the same inputs and 16 target

reco variables in total.

Generator level variables

Description

pr, 1, ¢7 mass
jet flavour
number of x4 in jet

Kinematic properties of the generated jet
Distinguishing b, c jets from light quarks or gluon jets
Counting the number of muons within the jet radius

Basic reconstructed variables

Description

pr, 1, (b: mass
b-tagging discriminator
number of constituents

Kinematic properties of the reconstructed jet
Score in [0,1] mimicking a tagging algorithm
Counting the number of reconstructed jet constituents

Extended dataset variables

Description (in addition to basic variables)

Neutral Hadron Fraction (nhf)

Charged Hadron Fraction (chf)

Neutral Electromagnetic Fraction (nef)
Charged Electromagnetic Fraction (cef)
Quark-Gluon discriminator (qgd)

Jet Identification (jetld)

Number of Charged Particles (ncharged)
Number of Neutral Particles (nneutral)
c-tagging discriminator

Number of Secondary Vertices (nSV)

fraction of jet energy carried by Neutral Hadrons

fraction of jet energy carried by Charged Hadrons

fraction of jet energy carried by photons and 7° mesons
fraction of jet energy carried by electrons

Discriminator score mimicking a quark/gluon tagging algorithm
Discriminator score mimicking a jet Identification algorithm
Number of reconstructed charged particles

Number of reconstructed neutral particles

Score of c-tagging algorithm, correlated with b-tagging

Poisson distributed number of Secondary Vertices in jets
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Metrics I

e The 1-d Wasserstein score (WS) [36] and the two-sample Kolmogorov-Smirnov

distance (KS) for comparing 1-d distributions between the target and the samples
produced by the model. A WS is assigned to each variable.

The Fréchet distance as a global measure. It is the distance between Multivariate
Gaussian distributions fitted to the features of interest, which [36] calls the Fréchet
Gaussian Distance (FGD). It is generally called the Fréchet Inception Distance
(FID) in image generation tasks:

&(@,y) = llpa — py|* + Te(Zy + Ty — 2(,%,) ). (8)

Covariance matching: another global metric used to measure how well an algorithm
is modelling the correlations between the various target features. Given the
covariance matrices of the two samples, target and model, we compute the Frobenius
Norm of the difference between the two:

|CoV(Xtarget) — Cov(Xumoaat)llr = [ D Y Ick; — il (9)

i=1 j=1
Correlations in the model samples are also visually evaluated through the use of
dedicated plots.
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Metrics 11

e As b and c-tagging are such important tasks in the study of jets, we compute the
receiver operating characteristic (ROC) curves for both scores. To quantify the
performance of a model, we compute the difference in log-scale between the ROC
coming from the model and that from the target distribution. Log-scale is used
because the true positive rate (TPR) and false positive rate (FPR) span different
orders of magnitude. We call this evaluation metric the Area Between the Curves
(ABC).

e Finally, we implement a classifier two-sample test (c2st): we train a classifier to
distinguish between training samples and samples coming from our models, giving
as additional input the gen information. The output is the percentage Pe.os of
samples which were incorrectly classified. For the optimal model, it has a maximum
value of 0.5. We thus report our results as 0.5 — P.og: in this way the best model
has the lowest c2st value. We use a scikit-learn [37] HistGradientBoostingClassifier
with default parameters as our classifier.



Training on more data

If we vary the training
split size from 10k to
10M jets, and we
generate 1M, we can
see that more training
data helps with
accuracy, but thereis a
plateau
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More results
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More results
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