
HEP-CCE

Evaluating Application Characteristics for GPU 
Portability Layer Selection 

ACAT 2024
March 13 2024

Charles Leggett
for HEP-CCE



HEP-CCESelecting Languages for Heterogeneous Applications
There are now multiple language selections that can be made for most 
GPU architectures
● "native"

○ CUDA / HIP / SYCL
● portable

○ Kokkos / Alpaka / 
OpenMP / std::par

○ HIP and SYCL

Portability layers have come a long way in the past few years, and can 
now support most backends.

How do we choose which language or portability solution to use?

2

CUDA Kokkos SYCL HIP OpenMP
OpenACC alpaka std::par

std::exec
NVIDIA 

GPU hipcc
nvc++

LLVM, Cray GCC, 
XL

nvc++

AMD GPU ZLUDA
prototype

openSYCL
intel/llvm hipcc

AOMP
LLVM
Cray

AdaptiveCpp
ROCm stdpar
oneapi::dpl

Intel GPU ZLUDA
prototype

oneAPI
intel/llvm

CHIP-SPV: 
early prototype

Intel OneAPI 
compiler

advanced
prototype oneapi::dpl

x86 CPU
PGI CUDA

for x86
(2010)

oneAPI
intel/llvm

openSYCL

via HIP-CPU 
Runtime

nvc++
LLVM, CCE, GCC, 

XL

FPGA via Xilinx 
Runtime

prototype
compilers 

(OpenArc, Intel, 
etc.) 

protytype via
 SYCL



HEP-CCEChoosing a GPU Language
There is no overall "best" language
● Each language has its own characteristics and associated strengths and 

weaknesses

A specific application might perform better, or be better suited for one language 
depending on its characteristics and code

When selecting a portability solution, we first need to: 
● Characterize the strengths and weaknesses of the languages
● Identify what characteristics of applications and code structures map best 

onto the language

3



HEP-CCEHEP/CCE-PPS
Exploring portability solutions for HEP applications by porting to array of GPU languages

FastCaloSim
● ATLAS parameterized LAr calorimeter simulation
● 3 simple kernels,1-D and 2-D jagged arrays, atomics, ROOT dependency

Patatrack
● CMS pixel detector reconstruction
● 40 kernels of varying complexity and lengths (many are short)

○ good test for latency, concurrency, asynchronous execution, memory pools

Wirecell Toolkit
● LArTPC signal simulation
● 3 kernels: rasterization, scatter-add, FFT convolution, atomics

p2r
● CMS "propagate-to-R" track reconstruction in a single kernel

Sherpa and Madgraph
● Leading order Event Generators with auto-generated code

Analyzed applications to find commonalities and associations with GPU language usage

4



HEP-CCEKernel Runtime and Launch Latency
Launching a native kernel on a GPU can take from a few to several tens of 
microseconds, depending on
● GPU architecture
● GPU driver
● CPU speed and bus

Some portability layers can considerably increase launch latency
● Kokkos
● OpenMP, especially for first launch

For applications with short kernels, where latency cannot be hidden, this 
can significantly impact performance

5



HEP-CCEConcurrency and Thread Pools
GPU kernels often work within a larger application framework that can use 
Multi-Threaded or Multi-Process concurrency.

GPU kernels can also be launched concurrently from different threads/processes.

Kokkos has significant incompatibilities with concurrency and thread pools
● Serial backend has a lock that serializes concurrent calls. 
● Threads backend explicitly forbids calls from many external threads.
● Concurrent kernel launches only achievable with CUDA and HIP backends, using 

architecture specific APIs that limit portability
○ new experimental feature of partitioned execution spaces may fix this

SYCL implementations are inconsistent in their ability to launch concurrent GPU kernels.
● some implementations on the same architecture serialize concurrent kernel calls 

from different threads
● some architectures have no concurrent SYCL solution

6



HEP-CCEExternal Library Compatibility
Most HEP applications use a variety of external libraries such as ROOT, 
Eigen. 

● Kokkos headers cannot be directly exposed to nvcc
● Many versions of Eigen are incompatible with nvcc

○ this will percolate up to APIs like Kokkos and Alpaka
● Eigen is currently incompatible with OpenMP offload
● nvc++ (for std::par) cannot compile ROOT yet

○ cannot expose ROOT headers to nvc++

Care must be taken to ensure compatibility with portability layer, or isolate 
interactions at compile time.
● Can usually compile different parts of application with 

gcc/clang/portability layer, and link shared objs at runtime
○ may require copying of data between sections so all objects allocated and 

compiled with "native" compiler in shared lib
● Build rules become considerably more complicated

7



HEP-CCEData Structure Complexity and Memory Transfers
The prevalent use of complex C++ classes in HEP EDMs maps very poorly to 
efficient GPU memory usage which work best with simpler SoAs.

APIs like Kokkos, SYCL and Alpaka offer additional support for memory 
constructs like Kokkos::Views or SYCL buffers to enable portability across GPU 
and CPU architectures.

● Portability comes with a price - increased overheads for allocations and data 
transfers when using constructs like Kokkos::Views
○ especially for many small objects 

● Pre-allocated objects can always be wrapped instead
● Automatic transfers using USM (for discrete GPUs) are invariably slower than 

explicit ones
○ std::par can only do USM transfers, by instrumenting constructors at compile 

time and triggering transfers on page faults

None of the APIs can gracefully represent jagged vectors.
● Heavily used by HEP codes

8



HEP-CCERNGs, FFTs, Atomics and Portability
Native compilers provide vendor specific hardware implementations 

● eg cuFFT, rocRand, atomicAdd

Portability layers either don't (fully) support them, or offer their own 
portable implementations

● Kokkos has its own versions of RNGs and FFTs
○ more challenging to validate against native implementations

● Alpaka has no interface to vendor libraries
● Intel OneMKL has interfaces to call vendor RNG backends, but not FFT
● nvc++ std::par std::atomic<T> can require C++20
● OpenMP offload of atomics on NVIDIA hardware has wildly different 

performance with different compilers and compiler versions.

9

M
ic

ro
be

nc
hm

ar
k 

Fr
am

ew
or

k 
fo

r P
er

fo
rm

an
ce

 E
va

lu
at

io
n 

of
 O

pe
nM

P 
Ta

rg
et

 O
ffl

oa
di

ng

https://indico.cern.ch/event/1330797/contributions/5796648/


HEP-CCECompilation Time
Portability layers can considerably increase compilation time
● may be a concern for large projects

● nvc++ is 2x - 3x slower than gcc
● SYCL icpx bogs down with large kernels

○ sometimes > 1000x slower
● Kokkos adds about 10 - 20% overhead
● OpenMP variable depending on compiler

○ gcc and clang add little overhead
○ nvc++ > 5x slower

10



HEP-CCERuntime Provisioning
Device and host backends may need to be selected at compile time
● Kokkos needs to be built with very specific hardware architecture 

identifiers, only one device/host combination allowed
○ -DKokkos_ARCH_SKX=On -DKokkos_ARCH_TURING75=On
○ offloaded objects in shared libs must be visible to a single compilation unit

● Alpaka device code of each backend needs to be compiled with the 
backend-specific compiler. 
○ Binaries of all backends can be loaded into the same process, as long as 

the user code guarantees unique symbols, and the backend technologies 
themselves don’t conflict.

● OneAPI (SYCL) now supports multi-platform binaries, specified at 
compile time (though only 1 per Intel/AMD/NVIDIA architecture)
○ -fsycl-targets=spir64,spir64_x86_64,nvidia_gpu_sm_75,amd_gpu_gfx1031

● Some OpenMP implementations can specify multiple architectures at 
compile-time
○ Code will select backend at runtime by querying system to see what 

hardware to target.

11



HEP-CCEConclusions
When selecting a GPU portability layer, a careful analysis of the application's 
characteristics is important to achieve the best match to ensure:

● compatibility
● performance
● portability

There is no single solution that is optimal for all situations.

Portability layers continue to evolve, requiring careful monitoring of 
technologies and re-examination of code bases.

● seeing convergence of increasing feature support and optimized 
performance

● emerging C++ standards may simplify choices in 5-10 years
○ as may migration to machine learning solutions

12



HEP-CCE

13

fin


