

ACAT 2024

STONY BROOK, NEW YORK

Towards a simplified (Fast) Simulation Infrastructure in ATLAS

R&D

EP

JOSHUA F. BEIRER (CERN)

ON BEHALF OF THE ATLAS COLLABORATION

International Workshop on Advanced Computing and Analysis Techniques in Physics Research Joshua

Joshua Falco Beirer

Motivation: Fast Simulation

- ATLAS needs to produce billions of MC events, but is limited by CPU constraints
- MC simulation has largest single share of total CPU usage
- About 80 90 % of CPU time spent on simulation of showers in calorimeter system

use (fast) parametric models to reproduce Geant4 simulation as accurately as possible

Current State-of-the-Art fast simulation tool in ATLAS · AtlFast3!

- **Basic Principle:** instead of tracking each particle in calorimeter showers, parametrise energy response with single particles
- Two distinct approaches of shower generation:
 - FastCaloSimV2: classical parametrised modelling
 - FastCaloGAN: Generative Adversarial Network
- **3-15x** increase in simulation speed with respect to Geant4
- Drastically improved physics performance with respect to predecessor

Dijets p^{lead} T · 20-60 GeV

Dijets p^{lea,}

^{1d} 1₆₀₋₄₀₀ GeV

Dijets p^{le}

^{*d}_3.2 TeV

¹⁰ 1.3-1.8 TeV

tt Semi-Leptonic

3-15 x increase in simulation speed

Run 3 Contiguration

Z_ 66

Simulation time fully dominated by Geant4 simulation in ID!

• Three separate parametrisations

• EM showers:

- 1. Photons γ
- 2. Electrons / Positrons e^{\pm}
- Hadronic Showers:
 3. Charged Pions π[±]
- Particles for parametrisation generated at the boundary between Inner Detector and Calorimeter System
- Parametrisation depending on incident particle energy and direction:
 - 17 log-bins of **truth momentum** from 64MeV to 4TeV
 - \bullet 100 bins of $|\eta|$ from 0 to 5.0

Talk to me for more on AtlFast3 for Run 3!

CERN-THESIS-2023-096

FastCaloSim in Geant4: Motivation

CERN-THESIS-2023-096

- AtlFast3 embedded in the Integrated Simulation Framework (ISF) to combine multiple simulators within Athena
- ISF is flexible, but complex
 - \rightarrow originally designed for complex use-cases that are not needed in ATLAS
 - \rightarrow disproportionate growth in complexity over the years
 - \rightarrow increasingly hard to maintain for the collaboration
- Geant4 allows to directly integrate fast simulation tools
 - 1. Implement FastCaloSimV2 as a Geant4 fast simulation model (VALIDATED!)
 - 2. Evolve FastCaloSimV2 into a fully experiment-independent external library (TO-DO!)
 - 3. Fully deprecate ISF as a particle-stack dispatcher in ATLAS (TO-DO!)

First step towards a **simple** and **streamlined** ISF-independent ATLAS simulation!

FastCaloSim in Geant4: Fast Simulation Models

- detailed detector description
- definitions of particles and processes
- transport in EM field

- where particles are parametrised
- which particles are parametrised
- **what** happens instead of full simulation?

FastCaloSim in Geant4: Fast Simulation Models

Step I: Choice of Trigger Volumes

CERN

Step II: Replacement of ATLAS Track Transport

- AtlFast3 relies heavily on an accurate determination of the shower centre position in each calorimeter layer
- To determine the positions, tracks need to be transported through the ATLAS calorimeter system, taking into account magnetic field

- AtlFast3 uses proprietary Athena tracking tools to transport particles
- Intersections with active calorimeter layers given as input to experiment-independent extrapolation algorithm

Athena transport needs to be replaced with experiment-independent Geant4 solutions

Step II: Replacement of ATLAS Track Transport

SIM-2024-004

- Interested only in track position at entry and exit of each calorimeter layer
- Instead of transporting through full calorimeter geometry, do navigation in simplified (layer-based) geometry

Event simulation time of Athena tracking tools recovered with Geant4 navigation in simplified geometry

How to construct simplified geometry?

Simplified Geometry: Construction

Goal: *Experiment-independent* package to automatically build simplified geometry based on detector cells where:

- Layers are modelled as cylinders
- Cylinder surfaces approximately correspond to real entry and exit of detector layers
- Clash-free

Approach (simplified):

- Model all layers as cylindrical hulls (='envelopes') from the maximum geometric extension of the cells
- **2.** Thin down hulls to generate clash-free geometry \rightarrow for barrel layers small $r = r_{mid}^{hull}$ \rightarrow for endcap layers small $z = z_{mid}^{hull}$
- **3.** Attempt to grow back thinned down layers to original size of envelopes (constraint: only grow up to the limiting layer, i.e. w/o creating overlaps)

Simplified Geometry: Construction

1) Calorimeter Cells

2) Cell Envelopes (NOT clash-free)

3) Thinned envelopes (Clash-free)

**** Real time elapsed	: 0.00852796
**** User time elapsed	: 0.01
**** System time elapsed	: 0
Size of G4SolidStore	: 50
Size of G4LogicalVolum	meStore : 50
Size of G4PhysicalVolu	meStore : 50
Number of volumes : 50	(2 levels)
Number of volumes chec	ker : 50
Number of clashes dete	ect 1: 0

Python package: pyGeoSimplify

- All functionality integrated in python package names pyGeoSimplify
- Input: ROOT file with cell positions and dimensions
- Output: GDML file of clash-free simplified detector
- Extensive testing with over 90% test coverage
- pyGeoSimplify available on PyPi: pip install pygeosimplify

Project description

release v0.0.4 build passing Codecov 93% commit activity 78/month license MIT

Welcome to pyGeoSimplify!

Download pyGeoSimplify

pip install pygeosimplify

Quick Start

import pygeosimplify as pgs
from pygeosimplify.simplify.layer import GeoLayer
from pygeosimplify.simplify.detector import SimplifiedDetector

Set names of branches that specify coordinate system of cells
pgs.set_coordinate_branch("XYZ", "isCartesian")

Load geometry
geo = pgs.load_geometry("DetectorCells.root", tree_name='treeName')

Create simplified detector
detector = SimplifiedDetector()

Add dector layers to detector layer = GeoLayer(geo, layer_idx) detector.add_layer(layer)

```
# Process detector
detector.process()
```

Save simplified detector to gdml file
detector.save_to_gdml(cyl_type='processed', output_path='processed.gdml')

Validation: e/γ

1.2

1.1

0.98

1.00

1.3

1e-2

Single Electron Shower Shapes SIM-2024-004

- Electrons and photons in ATLAS reconstructed based on topological calorimeter clusters
- Prompt e/γ identification heavily relies on calorimetric shower shape variables
- Shown here: reconstructed single electrons

No significant differences observed in shower shapes between ISF and Geant4 implementation

1.02

Validation: Jets

- Jets reconstructed using topological clusters and tracks from the Inner Detector
- Shown here: Reconstructed top jets from $t\overline{t}$ events

No significant differences observed in jet observables between ISF and Geant4 implementation

Summary

- ATLAS employs AtlFast3 for the simulation of billions of MC events to leverage CPU resources
- First implementation of the AtlFast3 service as Geant4 fast simulation model in ATLAS
- Replaced Athena tracking tools (heaviest ISF coupling) with Geant4 track propagation in simplified geometry
- Python-package for **experiment-independent automatic cell-based inference of simplified detector geometry** · might also be interesting for other use cases, e.g. Fast ATLAS Track Simulation (FATRAS)
- Validation of Geant4 fast simulation model shows **no significant differences relative to usage of default ISF implementation** for reconstructed objects

Outlook

- Most of the FastCaloSim code already compiles standalone, but still has various ATLAS dependencies that need to be replaced with experiment-independent implementations
- Goal is to have single external library that can be hooked to Geant4 fast simulation model
- In addition to ATLAS, use Open Data Detector (ODD) as proof-of-concept for experiment-independent implementation

BACKUP

is to the second second

ongitudinal

Separate parametrisation in longitudinal and lateral component

- What is total energy and how is energy shared between layers?
 - \rightarrow **longitudinal** energy profile
 - \rightarrow crucial for energy measurements
- How is energy distributed within layers?
 - \rightarrow **lateral** energy profile
 - \rightarrow crucial for particle identification

Problem:

- Energy depositions across layers highly correlated
 - \rightarrow difficult to model energy response in each layer independently

Strategy:

• Decorrelate energy depositions in layers using Principal Component Analysis (PCA)

FastCaloSimV2: Longitudinal Profile

Store cumulative energy fractions, mean and RMS of gaussians and covariance matrix

During simulation, chain is performed backwards:

- Parametrise average energy distribution in lateral direction over radial distance containing 99.5% of total energy and 8-bins in angular direction
- Parametrisation for each particle, energy, eta, calorimeter layers and bins of 1st PCA
- During simulation, randomly sample quantised energy deposits from 2D shape histograms (PDFs)
- To each hit, assign hit energy

$$E_{\rm hit} = \frac{E_{\rm layer}}{N_{\rm hits}^{\rm layer}} \times w$$

Weight dependent on radial position of hit

- FastCaloGAN based on **WGAN-GP** algorithm which offers more stable training compared to conventional GANs
- Electrons, photons and pions used to train the network
- One GAN is trained for each of the 100 bins in $|\eta| \, (0 5.0)$
- Total of 300 GANs to cover full detector region
- GAN trained to reproduce voxels and energies in the layer as well as total energy in one single step
- Each GAN trained for 1M epochs with a checkpoint saved every 1K epochs

NVoxel	Number of voxels	
Generator nodes	50, 50, 100, 200, NVoxel	
Discriminator nodes	NVoxel, NVoxel, NVoxel, NVoxel, 1	
Activation function	ReLU	
Optimizer	Adam [50]	WGAN-GP
Learning rate	10 ⁻⁴	
β1	0.5	parameters
β2	0.999	
Batch size	128	
Training ratio (D/G)	5	
Gradient penalty (λ)	10	

How can we (in general) model cells to compute the layer hulls?

Cell defined by $\Delta r, \Delta \phi, \Delta z$

Cell in x, y, z

1. Model calo cells as cube in one of three coordinate systems

- ullet Barrel / Tile cells: cubes in $\Delta\eta, \Delta\phi, \Delta r$
- Endcap cells: cubes in $\Delta\eta$, $\Delta\phi$, Δz
- FCAL cells cubes in $\Delta x, \Delta y, \Delta z$
- 2. Transform vertices of cube in desired coordinate system
- 3. Transformed cell: convex hull of transformed vertices

Simplified Geometry: Modelling Layer Hulls

▷ ~ [1]	<pre>import pygeosimplify as pgs from pygeosimplify.simplify.layer import GeoLayer from pygeosimplify.simplify.detector import SimplifiedDetector </pre>								Import modules											
[2]	<pre>pgs.set_coordinate_branch("XYZ", "isCartesian") pgs.set_coordinate_branch("EtaPhiR", "isCylindrical") pgs.set_coordinate_branch("EtaPhiZ", "isECCylindrical") <!-- 0.0s</td--><td colspan="11">Set the name of the branches indicating the coordinate system of the cells. Supported: (XYZ, EtaPhiR, EtaPhiZ)</td></pre>									Set the name of the branches indicating the coordinate system of the cells. Supported: (XYZ, EtaPhiR, EtaPhiZ)										
<pre>geo = pgs.load_geometry("/tests/data/ATLASCaloCells.root", tree_name='caloDetCells') geo.head(5) Load the geometry from ROOT file containi</pre>											aining	ce	ll in	form	ation					
[3]	\checkmark	0.45																		
		id	layer	isBarrel	isCylindrical	isECCylindrical	isCartesian	eta	phi	r	x	У	z	deta	dphi	dr	dx	dy	dz	
	0	3179541336923570176	6	0	0	1	0	-2.559710	0.053900	617.735962	616.838867	33.279976	-3970.418457	0.1	0.098175	0.0	0.0	0.0 219	9.418503	
	1	3179541345513504768	6	0	0	1	0	-2.559648	0.151909	617.774719	610.660461	93.484917	-3970.418457	0.1	0.098175	0.0	0.0	0.0 219	9.418503	
	2	3179541354103439360	6	0	0	1	0	-2.559603	0.249912	617.803223	598.610657	152.794373	-3970.418457	0.1	0.098175	0.0	0.0	0.0 219	9.418503	
	3	3179541362693373952	6	0	0	1	0	-2.559574	0.347912	617.821228	580.805481	210.637146	-3970.418457	0.1	0.098175	0.0	0.0	0.0 219	9.418503	
	4	3179541371283308544	6	0	0	1	0	-2.559562	0.445909	617.828552	557.416626	266.456024	-3970.418457	0.1	0.098175	0.0	0.0	0.0 219	9.418503	

- For all cells: need to provide r, x, y, z, η, ϕ of center position
- Additionally need to provide:
 - Cell widths ΔX , ΔY , ΔZ for cells with XYZ coordinate system
 - Cell widths $\Delta\eta, \Delta\phi, \Delta r$ for cells with EtaPhiR coordinate system
 - Cell widths $\Delta\eta, \Delta\phi, \Delta z$ for cells with EtaPhiZ coordinate system
- All cells must be assigned to a layer (number) and corresponding layer type (barrel or endcap layer) must be indicated