Manasvi Goyall, Andrea Zonca? Amy Roberts®, Jim Pivarski', lanna Osborne

1. Princeton University, Princeton, NJ, USA; 2. San Diego Supercomputer Center, La Jolla, CA, USA; 3. University of Colorado Denver, Denver, CO, USA

Need and Motivation

Scientific data formats can differ across experiments due to spe-
cialized hardware and data acquisition systems. The increase in
custom data formats has posed a major challenge for collabora-
tions like CDMS that spend time writing their own tools to read
and analyze their data. This project provides a simple solution.
Collaborations only need to describe their custom data formats
in KSY just once and directly convert their data into Awkward
Arrays using kaitai struct awkward runtime API.

What is Kaitai Struct YAML (KSY)?

KSY is a declarative language that takes YAML-like descriptions
of a data format structure and generates libraries in any of the
supported languages to read a raw data file.

, Generate

Describe _

| code using

daitra‘\ I(osr? at Kaitai Struct
Compiler

Custom

data format ksy' file

Importable libraries

o Compile KSY with kaitai_struct_compiler into source
files to read the structure in the languages of your choice.

o Utilize kaitai struct [language] runtime API to write
your own main() function to use these libraries for analysis.

Example: animal.ksy

Here is a simple data structure that describes the animal data.
However, the actual formats of scientific data are more complex.

: i ﬁ i
i ' |pos| size type id |/},
. |pos| size type id i ON] 1 u- str_len i i
i 0 | ... |AnimalEntry|entryt—m| 1 [str_len|str(UTF-8)| species | |
' | repeat to the end of stream i 1 ut age i i
i i 2 u2le weight | | i
Bits 0-7 8-15 16-23 24-31 32-39 40-55
Value 0x03 0x63 Ox6f Ox77 0x06 O0xDCO05

If you don’t have a hex chart handy, this entry describes a 6 year
old cow that weighs 1500 pounds.

Why Awkward Arrays?

When dealing with large files and complicated data structures, even the most efficient

Python coc

e can be quite time and resource-heavy. Awkward Arrays offer a dynamic and

efficient ap

broach to represent complex data structures in NumPy-like arrays. Awkward

arrays store data in jagged nested arrays of arbitrary types and variable lengths.

Awkward Target for KSY: User Interface

Describe your custom data format into KSY just once. With just Kaitai, you have to
write all the analysis code including main(). This takes a lot of time and efforts for

complex nested data structures of scientic data.

T/nCa

Describe data
in .ksy format

In kaitai struct awkward runtime,
simply use the Awkward target to gen-
erate parsing code and a shared library
which is passed to Python and the raw
data is loaded to get the Awkward Arrays.

Manually write
all the code

Generate C++
to parse ksy file

Kaitai Struct

_AWkAWard

—>$69—’ .‘ Awkward = I'I’ay
Awkward O Runtime
.Axrqy
Describe data Generate Awkward Generate shared libraries T
' ++
in .ksy format C++ code ’_co parse to pass byffers to Python Load the
ksy file via ctypes
raw data

KSY — LayoutBuilder in animal.ksy

using AnimalBuilderType =

meta.:

RecordBuilder<
RecordField<Field_animal::
animalA__Zentry,
ListOffsetBuilder<int64_t,

id: animal
endian: le

seq:
\ - 1d entry

type: animal_entry

RecordBuilder<

repeat: eos

RecordField<Field_animal_entry::
animal_entryA__Zstr_len,
NumpyBuilder<uint8_t>>,

RecordField<Field_animal_entry::
animal_entryA__Zspecies,
ListOffsetBuilder<int64_t,

NumpyBuilder<uint8_t>>>,

types:

animal_entry:
seq:
- 1d: str_len
type: UuT

id: species

RecordField<Field_animal_entry:: type: str
animal_entryA__Zage, size: str_len
NumpyBuilder<uint8_t>>, encoding: UTF-8

RecordField<Field_animal_entry:: - id: age
animal_entryA__Zweight, type: uT
NumpyBuilder<uintl16_t>> . .

- id: weight
> > >
type: u2

1| VET | NOV |}
TES | TAM
1| EN | TVM|[]

SDSC

kaitai_struct_awkward_runtime Steps

1

Clone, install awkward-kaitai, generate C++ files for Awkward
target and build awkward kaitai for the main source file.

TERMINAL

Open Python and print the returned ak.Array:

import awkward_kaitai

animal = awkward_kaitai.Reader(
"./src-animal/libanimal.so”

) # pass the shared library

awkward_array = animal. load(
"example_data/data/animal.raw”

) # pass the raw data file

awkward_array.to_list()|:2]

Finally, animal.ksy is represented in Awkward Arrays as:

[{'animalA__Zentry': |

{"animal_entryA__Zstr_len': 3,
‘animal_entryA__Zspecies’ . 'cat’,
"animal_entryA__Zage : 5,
"animal_entryA__Zweight': 12},

{"animal_entryA__Zstr_len': 3,
‘animal_entryA__Zspecies’ : 'dog’,

‘animal_entryA__Zage' : 3,
"animal_entryA__Zweight': 43}

|}]

Acknowledgement

, This work is supported by NSF cooperative
~agreements OAC-1836650 and PHY-2323298
(IRIS-HEP) and grants OAC-2104003 (PONDD)
and OAC-2103945 (Awkward Array).

