FASER Tracking & Emulsion Stations Alignment

Ali Garabaglu on behalf of FASER Collaboration March 14th, 2024 ACAT 2024

OUTLINE

- Introduction to FASER detector.
- Brief review of tracking
- Tracking station alignment
- Recent physics results
- Review to Emulsion-IFT matching

ForwArd Search ExpeRiment (FASER) At The LHC

- FASER is a relatively new detector designed to search for long lived BSM particles and neutrinos.
- Located 480m from ATLAS interaction point
 - including 100m of rock which shields most backgrounds

FASER Detector

• Low cost modular detectors built with both existing and some costume components

Front Scintillator

Silicon-Strip Tracker

- There are four tracking stations
- Each made from 3 layers
- With each layer having 8 SCT modules
 - 80µm strip pitch, 40mrad stereo angle
- Same SCT modules as in ATLAS

SCT module

Tracking layer

Tracking station

Ali Garabaglu - ACAT - March 14th, 2024

Tracking Stations Alignment

- Want to correct the tracking geometry
- Using global χ^2 method with Millepede II
- clusters of strips on 1 side of a module
 - to align the spectrometer (stations 1/2/3) at layer and module level.
- Construct space points which are 3D points formed from clusters of strips on both sides of a module, assuming that the track is perpendicular to the module.
 - IFT alignment at station and layer level.
 This is to align the large shift in the IFT.
- Use clusters to alignment all four station at layer and module level. This is for fine tuning the alignment.

Four Station Alignment

- Alignment procedure was validated with MC
- Spectrometer alignment is performed in 20 iterations
- Then the space point and final cluster alignment are done in 6 iterations each.
- Track χ^2 shown. Shows good agreement with MC.

Track χ²/nDoF

Track Parameters

- MC samples are muons produced upstream of FASER*v* with FLUKA energy spectrum. They do not simulate LHC conditions.
- In the px/pz distribution there is a smaller peak to the left of the main peak at zero in data which is due to background coming from the LHC arc.

Residual vs Module ID

- Mean value of the gaussian fit on the unbiased residuals for each module from the tracks reconstructed from MC simulation in ideal geometry and from data in aligned geometry.
- Mean of residual after alignment a few microns from expectation in MC simulation

Ali Garabaglu - ACAT - March 14th, 2024

Recent Physics Results

- Search for Dark Photons with FASER (<u>arXiv</u>)
- First observation of collider neutrinos with FASER (arXiv)
 - With 153 events at 16 σ
- FASER*v* analyses are in progress for identifying neutrino candidates.
- We want to use FASERv neutrino candidates to match with tracks from IFT.
- Emulsion sub-detector is in place for about 2 months. Up to $O(10^6)$ tracks/cm², with $O(10^7)$ tracks in the spectrometer triggered while one emulsion detector is in place.

All Combinatorial Matching

- Using the extrapolated tracks calculate the residual between each IFT track and all given Emulsion tracks. call this the all combinatorial method.
 - Residual between X, Y, Px/Pz, Py/Pz.
- Use residuals in χ^2 like formula to find minimum and match tracks.

Emulsion-IFT Matching

- MC validation of matching emulsion and IFT tracks works well.
- Work in progress to apply this to data.
 - For now only see one possible match
 - Currently only sub-region of emulsion is processed hence why we are using the orange and green regions in data.
 - Using high quality neutrino candidates for matching. Plan to use lower quality for more statistics.

Summary

- FASER successfully took data in 2022 and 2023.
- Alignment of the spectrometer had been done and used for recent physics results.
- Preliminary results of global χ² alignment with all four stations
 Improves Chi2 and residuals to similar level in perfect geometry MC
- All combinatorial Emulsion-IFT matching works well in MC. Work in progress on data.
- Future improvements:
 - Include all 6 parameters in alignment
 - Optimization can be done in alignment workflow
 - More neutrino candidates from emulsion detector

Backup Slides

Weak Modes in Alignment

- The global chi2 keeps invariant in weak modes but track parameters will be affected
- Need extra constraints
 - In ATLAS/CMS, good constraints from J/psi or Z mass
- In FASER, fix two layers in order to avoid weak modes

Summary of Alignment Workflow

Chi2 Alignment

Minimize the chi2

.

- Residual is defined as: $\vec{r} = \vec{f}(\vec{a}, \vec{\pi}) \vec{m}$
- Define the total chi2 from all the tracks as:

$$\chi^2 = \sum_{tracks} \vec{r_i}^T \cdot V_i^{-1} \cdot \vec{r_i}$$

 \rightarrow

 $d \gamma^2(\vec{a})$

 $\vec{f}(\vec{a},\vec{\pi})$: Prediction from track fitting

- \vec{m} : Measurements
- V_i^{-1} : Covariance matrix of residuals measurements

$$\Delta \vec{a} = -\left(\sum_{tracks} \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right) \cdot V_i^{-1} \cdot \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right)^T\right)^{-1} \cdot \left(\sum_{tracks} \left(\frac{d\vec{r}_i(\vec{a})}{d\vec{a}_0}\right) \cdot V_i^{-1} \cdot \vec{r}_i(\vec{a}_0)\right)$$

Alignment parameters