

for the ATLAS computing activity

Boosting CPU Efficiency in ATLAS Inner Detector Reconstruction with Track Overlay

Fang-Ying Tsai (Stony Brook University), Dominik Duda (University of Edinburgh), and Stephen Jiggins (DESY),

ACAT 2024, Stony Brook University, 11th March 2024

ATLAS pile-up model

• Aiming to increase the efficiency of the ATLAS reconstruction chain

• Reduce reconstruction time by **reusing initially reconstructed tracks** • Good approximation as long as hard-scatter (HS) tracks don't pick up pile-up hits

Hybrid overlay • Use **Deep Neural Network (DNN**) to decide on an event-by-event basis if Track Overlay or MC overlay should be used. • DNN assigns score to each track to determine if track is likely impacted by pile-up activity • Negligible degradation in physics performance compared to MC overlay • QCD multijets (high p_{τ}): 35.3% of events are sent to track overlay • QCD multijets (low p_{τ}): 93.5% of events are sent to track overlay • Top quark pairs: 86.4% of events are sent to track overlay

CPU benchmarking

• Using track overlay provides a significant reduction in

• Reduction of around 45% with respect to MC overlay • No loss in performance due to modification of workflow

approximately 50-60 pile-up collisions per event)

Configuration	Overlay	Reconstruction
MC Overlay	2.34s	4.86s
Track Overlay	3.26s	2.72s

Configuration	Overlay	Reconstruction
Hybrid Overlay (All to MC Overlay)	3.33s	4.93s
Hybrid Overlay (All to Track Overlay)	3.25s	2.65s
Hybrid Overlay (ML)	3.30s	2.71s

Performance is stated in HS06/events

