
Optimizing the CMSSW Infrastructure for Run 3

A. Valenzuela1, S. Muzaffar1, I. Razumov2

CERN - CMS Core Software
ACAT 2024 - Stony Book, NY

March 13th, 2024

1CERN, 2Princeton University



CMS Offline Software - CMSSW

• CMSSW contains the software collection needed to process event data at CMS.
• It has a large code base hosted on GitHub.

Figure: Growth of the CMSSW GitHub repository since 2019.

CMSSW Code Base
100+ Contributors/month
500+ Commits/month
100+ PRs/week
200+ GitHub repositories
for CMSSW and externals

• 5.5M lines of code leading to 3k binary products.
• 550+ external packages built from source.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 2 21

https://github.com/cms-sw/cmssw


CMS Offline & Computing - Core Software

Core Software@CMS
• CMSSW Build Releases
• Integration Builds (IBs)
• Continuous Integration /

Delivery (CI/CD) system

• This contribution presents
the recent enhancements to
CMSSW:

Software Stack.
Infrastructure.

Figure: CMSSW IB Infrastructure schema.

• Those improvements are focused on obtaining more throughput, adding a wider testing
coverage and reducing manual intervention on the CMSSW Infrastructure.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 3 21



Contributions to CMSSW

• Improvements on the CMSSW Software Stack

• Improvements on the CMSSW Infrastructure

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 4 21



Improvements on the CMSSW Software Stack

Why More Throughput?
• We must make efficient use of computing resources, including computing capacity.
• Faster code base gives us more flexibility to schedule jobs, to plan sample production, to

incorporate a last minute necessary features, etc.

• CMS Simulation, Reconstruction, and HLT code have been used to deliver events for analysis
during Run 1 and 2 of the LHC at CERN.

• Advanced Compiler Options have shown to provide a throughput increase.
Concretely, Link Time (LTO) and Profile Guided (PGO) Optimization techniques showed near
the yearly 10% aspirational performance improvement.
Based on results from Speeding up CMS simulations, reconstruction and HLT code using
advanced compiler options presented by Danilo Piparo (ACAT 2022).

• Over this last year, we have been working on incorporating those theoretical
improvements to the infrastructure.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 5 21

https://indico.cern.ch/event/1106990/contributions/4991214
https://indico.cern.ch/event/1106990/contributions/4991214


Link Time Optimization - LTO

Link Time Optimization Basics
LTO instruments compilation units with metadata, consulted to optimize when building shared
objects. It provides better runtime performance through whole-program analysis and
cross-module optimization.

• LTO improvements in the event loop time and event throughput showed a 2-3% speedup of
Simulation, Reconstruction and HLT code. LTO Study

• LTO got the approval from Physics Validation in early 2023.
• It was officially integrated around 1 year ago (end of February 2023). LTO default

• Currently, LTO is enabled the default for CMSSW (as of 13_0_X).

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 6 21

https://indico.cern.ch/event/1106990/contributions/4991214
https://github.com/cms-sw/cmsdist/pull/8332


Link Time Optimization - LTO
LTO in external packages

• Apart from CMSSW, we compile some externals such as geant4, vecgeom, g4hepem,
dd4hep, and celeritas, with LTO enabled.

Infrastructure Challenges

When moving LTO to production, we found it incompatible with some of our IB "flavors":

IB Flavor Discussion Incompatibility Reason
CUDA cms-sw/cmssw#33667 NVCC cannot handle LTO
ASAN cms-sw/cmssw#43003 GCC optimization bug
CLANG cms-sw/cmsdist#8335 Cannot link against external

libraries compiled with GCC
ppc64le cms-sw/cmssw#40177 GCC bug in GCC 11.2.1/11.3.0.

architecture Already fixed for GCC11/12 branches2

Table: LTO incompatibilities in CMSSW IBs.

2We hope to get rid of it in the incoming GCC updates
A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 7 21

https://github.com/cms-sw/cmssw/issues/33667
https://github.com/cms-sw/cmssw/issues/43003
https://github.com/cms-sw/cmsdist/pull/8335
https://github.com/cms-sw/cmssw/issues/40177


Profile Guided Optimization - PGO

Profile Guided Optimization Basics
PGO uses profiling to improve runtime performance. It implies one compilation to build
instrumented binaries, one execution to produce a profile of the application and one extra
compilation to re-build from sources with information from the profile.

• PGO performs changes such as inlining, block ordering, register allocation, conditional
branch optimization, etc showing 7-8% speedup. Other findings suggest:

Five workflows seem to be enough to produce profiles to optimize all workflows.
A few tens of events are enough to produce complete profiles. PGO Study

• PGO does not have the approval from Physics Validation yet.

• Merging the profiles is not technically easy since we cannot run full CMSSW at once.
Merging profiles give coverage errors.
→ As in LTO, we build some externals with PGO, that we profile for a CMSSW run.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 8 21

https://indico.cern.ch/event/1106990/contributions/4991214
https://github.com/cms-sw/cmssw/issues/42721


Advanced Compiler Techniques - Summary

Compilation Flags

LTO
-flto -fipa-icf -flto-odr-type-merging -fno-fat-lto-objects

PGO
Generation: -fprofile-generate -fprofile-dir="/profile"
Execution: -fprofile-use -fprofile-partial-training -fprofile-dir="/profile"

Executive Summary

• LTO has immediate benefits for all CMS applications giving 2-3% speedup. [DONE]

• PGO is also effective giving 7-8% speedup. [ON-GOING]

• There is no CMS-specific configuration involved in this optimization, so this analysis could
be of interest for other experiments/projects.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 9 21



Contributions to CMSSW

• Improvements on the CMSSW Software Stack

• Improvements on the CMSSW Infrastructure

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 10 21



CMSSW Integration Builds

• Integration Builds are crucial to maintain CMSSW.
• All CMSSW IBs are automatically deployed via Jenkins CI every 12 hours to CernVM-FS.

Build for a set of active release cycles, multiple OS/archs/compilers and different IB "flavors".

Once a week, fully build all release cycles.
Around 40 IBs are build and deployed every day. IB page

• The variety of software flavors and architectures, provides different approaches to identify
bugs and legacy code at an early stage.

Non-amd64 Validation
Architectures aarch64 and ppc64le have been validated (now treated as production).

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 11 21

https://cmssdt.cern.ch/SDT/html/cmssdt-ib/##/ib/CMSSW_12_6_X


Variety of IB Flavors

We have integrated new IB flavors in the infrastructure:
• GPU IBs: They make use of heterogeneous resources.

They were incorporated in CMSSW_11_3 (January 2021).

• SKYLAKE - AV512 IBs: As an initial attempt to support multi-vectorization architectures.
Including vectorization targets such as haswell and skylake-avx512.
They were incorporated in CMSSW_11_3 (March 2021).

• MULTIARCHS IBs: To add support for a
standardized set of "micro-architecture
levels" in the x86-64 psABI.

The psABI levels supported by the
processor can be checked from the OS.
HLT is planning to move to MULTIARCHS
this year.
They were incorporated in CMSSW_14_1
(January 2024).

Figure: New IB flavors for CMSSW.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 12 21



Resource Monitoring & New Scheduler

• The increasing workloads had
an impact on the
infrastructure.

• IB RelVals were run blindly
and killed due to the memory
usage.

• We started collecting the
resource usage of each step
of RelVals workflows in
OpenSearch.

Figure: Resource monitoring dashboard for externals.

• New workflow scheduler makes use of the resource information to schedule future runs.
• This setup is also used for monitoring the resource utilization when building externals.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 13 21



Infrastructure Migrations

To efficiently accommodate the increasing workloads, migration of the CernVM File System to a
parallel publishing setup was required.

• Deployment jobs experienced delays due to our serial publishing setup, directly impacting on
the testing time.

Design Choices

• Multi-release manager setup
with 3 publishers for amd64
and ppc64le, and a
dedicated one for aarch64.

• Artifacts are published in
different paths based on
the architecture.

Figure: Publishing paths are based on architecture.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 14 21



CernVM-FS Parallel Publishing Migration
• Deployment waiting times have reduced significantly with the parallel setup.

Avoid blocking the publishers with non-production architectures.

Figure: Waiting time of deployment jobs to cms-ib.cern.ch. The parallel setup was put in place the
20th of February 2023.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 15 21



Conclusion

Overall, these advancements have improved the CMSSW Software Stack in terms of throughput
and the CMSSW Infrastructure for Run 3.

• Advanced compiler techniques have shown promising results.
We will continue working to incorporate PGO to CMSSW, and assess the benefits from the
infrastructure side.

• The variety of IBs provides different approaches to identify bugs and legacy code.
As well as to incorporate computing techniques such as multi-vectorization architectures or
heterogeneous resources to CMSSW.

• We have seen major improvements with the CernVM-FS Parallel Publishing setup.
It has speed up the IBs deployment, which has an impact also on the test step.
The current setup allows horizontal scaling.

• Finally, CI is also one of our major improvement focus in order to adopt efficient methods for
monitoring and scheduling, testing, and integrating the Software Stack.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 16 21



Thanks!



Link Time Optimization (LTO) Workflow

Figure: Left: Non-LTO compilation and linking workflow. Right: LTO compilation and linking workflow
[source].

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 18 21

https://convolv.es/guides/lto/


Parallel Link Time Optimization (LTO) Workflow

Figure: Left: Regular LTO compilation and linking workflow. Right: LTO compilation and parallel linking
workflow [source].

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 19 21

https://convolv.es/guides/lto/


CMSSW Release Build Infrastructure

Figure: CMSSW Release Build Infrastructure schema.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 20 21



CMSSW Improvements on Continuous Integration

Other enhancements to improve the CMSSW CI Infrastructure have been adopted:

1. On-demand generation of baselines.
Generate baseline only when a Pull Request (PR) needs it.
First PR to request it will generate the baseline and other PRs will reuse it.
PR tests can make use of latest IB as soon as it is available on cvmfs.

2. Unit test for GPU.
PR tests check for GPU resources to run tests when needed.

3. Integration of the CRAB Computing Infrastructure in PR testing (and IBs).
Submission of CMSSW jobs to distributed computing resources as part of the testing.

A. Valenzuela Ramírez (CERN) Optimizing the CMSSW Infrastructure for Run 3 March 13th, 2024 21 21


	Introduction
	CMS Offline Software - CMSSW
	CMS Offline & Computing - Core Software

	Improvements on the CMSSW Software Stack
	Link Time Optimization
	Profile Guided Optimization

	Improvements on Integration Builds
	Variety of IB Flavors
	Resource Monitoring & New Scheduler
	Infrastructure Migrations

	Conclusion
	Improvements on Continuous Integration

