

The Gaudi Framework

@ Event processing framework used by ATLAS, LHCb, and others
@ Experiment-specific frameworks are layered on top of Gaudi
o Athena for ATLAS

@ Handles basic tasks including work scheduling

Gaudi on HPCs

@ Gaudi designed for High Throughput Computing on CPUs
@ Two challenges

e Efficiently running on multiple nodes — See AthenaMPI poster
e Handling offloading to GPUs

@ Primary (not sole) purpose of asynchronous offloading

Gaudi on HPCs

@ Gaudi designed for High Throughput Computing on CPUs
@ Two challenges

e Efficiently running on multiple nodes — See AthenaMPI poster
e Handling offloading to GPUs

@ Primary (not sole) purpose of asynchronous offloading

\%
U D)

The Avalanche Scheduler

@ Gaudi scheduler used by ATLAS
@ Schedules work units called Algorithms
e Each algorithm takes m inputs and produces n outputs
e No crossing of event boundaries
@ Algorithms organized in DAG
o Defined primarily by data dependencies
@ Some explicit control flow
e DAG repeated for every event

@ Each algorithm-event pair produces TBB task on task_arena

Filling the CPU

@ Avalanche scheduler keeps CPU busy

@ Assuming algorithms are CPU bound
@ Offloading mostly ad-hoc
e CPU thread stays busy while algorithm waits for results from CPU

@ Need way to free up CPU while waiting for GPU

AsynchronousAlgorithms

@ Add new type of Algorithm - AsynchronousAlgorithm
@ Informs the scheduler that algorithm offloads to GPU
@ Should not consume significant CPU time

@ Scheduled separately

@ Functionality to asynchronously wait for GPU

Possible Option: Overcommiting the CPU

@ Could run many more CPU threads than cores
e Threads would yield if still waiting

@ Syscalls for context switches are expensive
@ No control over spurious wakeups

@ Number of concurrent GPU algorithms limited by number of threads

Chosen Option: Fibers (/ lightweight threads / stackful coroutines)

@ Similar to threads but entirely in user space
e Cooperative multitasking - CPU work never interupted to check on GPU

@ Usermode context switches are faster
A context switch between threads costs usually thousands of CPU cycles
on x86 compared to a fiber switch with less than 100 cycles.
— Boost Fiber Documentation

@ Runtime can check if GPU is done - No spurious wakeups
@ Cheap to create fibers - Create as many as needed

Avalonche Scheduler

TBB Thread poo[(exis‘tiv\g)

~

||

1 thread ’per core

Boost Fiber Tl«reodpool

[| |]
UNIRNNEREEN D
2-3 HW threads, 1 fber per o\lgot‘?'tl'\w«

|

_J

queue oP and Tasks

GPU algorithms mapped to fibers

Design Details

@ Distinguish CPU and GPU algorithms in scheduler

@ Synchronous (CPU) algorithms routed to TBB thread pool

@ Asynchronous (GPU) algorithms launch new fibers on small Boost Fiber
thread pool

@ Asynchronous algorithms suspend (yield CPU) while waiting for GPU

@ Boost Fiber only re-schedules suspended fiber if GPU has returned data

CUDA Support

@ Not inherently CUDA specific, but implemented support
@ Able to await completion of CUDA stream

@ Fiber only awoken if stream is complete

e Stream creation and reuse is managed
@ Utilities to manage memory

@ Portal for allocating GPU memory

@ Throttle tasks if memory is full
e Use vecmem to wrap pinned memory allocation

Performance

m

OffloadableAlgos : python3
Starting 48th concurrent strean
GPU Crunch time: 3.736 s. Input length 39642, output length 39642
Waited 192.867 ns to allocate 83.864832 MB of GPU nenory
Starting 48th concurrent strean

GPU Crunch tine: 3.897 s. Input length 39693, output length 39693.
6PU Crunch tine: 3.624 5. Input length 48424, output length 48424.

concurrent strean

concurrent strea

ns L allocate 83.893584 M8 of GPU neno
36

input. tength 3991, output Lot 39991,

:mcurr‘ent strean
GPU Crunch time: 3.982 s. Input length 39663, output length 39663
Starting 48th concurrent strear

GA1 GPU Crunch tie: 3.634 5. Input length 48898, output length 49068.
Input length 48987, output length 42887.

GA1 GPU Crunch time: 3
Starting 47th concurrent strean
Starting 48th concurrent strean
GA1 GPU Crunch time: 3.621 s. Input length 48429, output length 48429
Starting 48th concurrent stre

3.561 5. Input length 39961, output length 39961.

Starting 48th concurrent strean
GAT GPU Crunch time: 3.193 s. Input length 39688, output length 39688
Starting 48th concurrent strea

GA1 GPU Crunch time: 3.666 5. Input length 48129, output length 48129.

ncurrent str
6PU Crunch tine: 3.82 s. Input length 48424, output length 48424
concurrent strean
ch tine: 3.343 s. Input length 48373, output length 48373,
Starting 48th concurrent stre
runch tis

3.575 5. Input length 48123, output length 49123
GAT GPU Crunch time: 3.368 5. Input length 39868, output length 39868.

Starting 47th concurrent strean
Starting 48th concurrent strea

642 GPU Crunch tie: 3.857 5. Input length 48242, output length-48242.

Starting 48th concurrent str

GAT GPU Crunch time: 4.222 5. Input length 48497 Gutput length 48497.

Starting 48th concurrent strean
642__GPU Crunch time: 3.272 5. Input length 39272, -output length 39272
Starting 48th cor ILAIHEHL strean

© 3.868 5. Input length 48474, output length 4B474.

Starting 48th :mv:urrent strean

=

nvtop — Konsole

(=]

~: nvtop

0 [NVIDIA GeForce RIX 3050 Tt Luptop Bmﬂ o GEN 48 Bx RX: 1.498 GiB/s TX: 255.9 MiB/s
Bz

61/4.00861]

108 6P
GPUB men%

|Starting 48th concurrent stream

48 simultaneous GPU algorithms on 2 CPU threads

@ AsynchronousAlgorithms allow GPU work to run asynchronously
@ Implemented using Boost Fiber
e Reduces cognitive workload on users

@ Allows many simultaneous GPU algorithms on small number of CPU threads

Backup

Why Not Standard (stackless) Coroutines?

@ This implementation uses Boost Fiber, not C++ 20 standard coroutines
@ Coroutines would require manual implementation of re-scheduling etc.
e Get this all from Boost Fiber
@ Get GPU monitoring “for free”
@ Fibers fit well into existing design
@ Pretty similar to TBB tasks
@ Easier for users to write code to run in a fiber
e Can write an ordinary function, not a coroutine

Why Not oneTBB Tasks?

@ With oneTBB, can suspend tasks, however:
@ Still need to support TBB 2020
@ Boost Fiber has built-in support for CUDA (and HIP)

@ Useful to separate out CPU work

