
Asynchronous Offloading in Gaudi

Paolo Calafiura, Julien Esseiva, Xiangyang Ju, Charles Leggett,

Beojan Stanislaus, and Vakho Tsulaia

ACAT 2024

13th March 2024

The Gaudi Framework

Event processing framework used by ATLAS, LHCb, and others

Experiment-specific frameworks are layered on top of Gaudi

Athena for ATLAS

Handles basic tasks including work scheduling

Beojan Stanislaus 1

Gaudi on HPCs

Gaudi designed for High Throughput Computing on CPUs

Two challenges

Efficiently running on multiple nodes – See AthenaMPI poster

Handling offloading to GPUs

Primary (not sole) purpose of asynchronous offloading

Beojan Stanislaus 2

Gaudi on HPCs

Gaudi designed for High Throughput Computing on CPUs

Two challenges

Efficiently running on multiple nodes – See AthenaMPI poster

Handling offloading to GPUs

Primary (not sole) purpose of asynchronous offloading

Beojan Stanislaus 2

The Avalanche Scheduler

Gaudi scheduler used by ATLAS

Schedules work units called Algorithms

Each algorithm takes m inputs and produces n outputs

No crossing of event boundaries

Algorithms organized in DAG

Defined primarily by data dependencies

Some explicit control flow

DAG repeated for every event

Each algorithm-event pair produces TBB task on task_arena

Beojan Stanislaus 3

Filling the CPU

Avalanche scheduler keeps CPU busy

Assuming algorithms are CPU bound

Offloading mostly ad-hoc

CPU thread stays busy while algorithm waits for results from CPU

Need way to free up CPU while waiting for GPU

Beojan Stanislaus 4

AsynchronousAlgorithm s

Add new type of Algorithm – AsynchronousAlgorithm

Informs the scheduler that algorithm offloads to GPU

Should not consume significant CPU time

Scheduled separately

Functionality to asynchronously wait for GPU

Beojan Stanislaus 5

Possible Option: Overcommiting the CPU

Could run many more CPU threads than cores

Threads would yield if still waiting

Syscalls for context switches are expensive

No control over spurious wakeups

Number of concurrent GPU algorithms limited by number of threads

Beojan Stanislaus 6

Chosen Option: Fibers (/ lightweight threads / stackful coroutines)

Similar to threads but entirely in user space

Cooperative multitasking – CPU work never interupted to check on GPU

Usermode context switches are faster

A context switch between threads costs usually thousands of CPU cycles

on x86 compared to a fiber switch with less than 100 cycles.

— Boost Fiber Documentation

Runtime can check if GPU is done – No spurious wakeups

Cheap to create fibers – Create as many as needed

Beojan Stanislaus 7

Design

GPU algorithms mapped to fibers

Beojan Stanislaus 8

Design Details

Distinguish CPU and GPU algorithms in scheduler

Synchronous (CPU) algorithms routed to TBB thread pool

Asynchronous (GPU) algorithms launch new fibers on small Boost Fiber

thread pool

Asynchronous algorithms suspend (yield CPU) while waiting for GPU

Boost Fiber only re-schedules suspended fiber if GPU has returned data

Beojan Stanislaus 9

CUDA Support

Not inherently CUDA specific, but implemented support

Able to await completion of CUDA stream

Fiber only awoken if stream is complete

Stream creation and reuse is managed

Utilities to manage memory

Portal for allocating GPU memory

Throttle tasks if memory is full

Use vecmem to wrap pinned memory allocation

Beojan Stanislaus 10

Performance

48 simultaneous GPU algorithms on 2 CPU threads

Beojan Stanislaus 11

Summary

AsynchronousAlgorithm s allow GPU work to run asynchronously

Implemented using Boost Fiber

Reduces cognitive workload on users

Allows many simultaneous GPU algorithms on small number of CPU threads

Beojan Stanislaus 12

Backup

Why Not Standard (stackless) Coroutines?

This implementation uses Boost Fiber, not C++ 20 standard coroutines

Coroutines would require manual implementation of re-scheduling etc.

Get this all from Boost Fiber

Get GPU monitoring “for free”

Fibers fit well into existing design

Pretty similar to TBB tasks

Easier for users to write code to run in a fiber

Can write an ordinary function, not a coroutine

Beojan Stanislaus 13

Why Not oneTBB Tasks?

With oneTBB, can suspend tasks, however:

Still need to support TBB 2020

Boost Fiber has built-in support for CUDA (and HIP)

Useful to separate out CPU work

Beojan Stanislaus 14

