


The Gaudi Framework

@ Event processing framework used by ATLAS, LHCb, and others
@ Experiment-specific frameworks are layered on top of Gaudi
o Athena for ATLAS

@ Handles basic tasks including work scheduling



Gaudi on HPCs

@ Gaudi designed for High Throughput Computing on CPUs
@ Two challenges

e Efficiently running on multiple nodes — See AthenaMPI poster
e Handling offloading to GPUs

@ Primary (not sole) purpose of asynchronous offloading
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The Avalanche Scheduler

@ Gaudi scheduler used by ATLAS
@ Schedules work units called Algorithms
e Each algorithm takes m inputs and produces n outputs
e No crossing of event boundaries
@ Algorithms organized in DAG
o Defined primarily by data dependencies
@ Some explicit control flow
e DAG repeated for every event

@ Each algorithm-event pair produces TBB task on task_arena



Filling the CPU

@ Avalanche scheduler keeps CPU busy

@ Assuming algorithms are CPU bound
@ Offloading mostly ad-hoc
e CPU thread stays busy while algorithm waits for results from CPU

@ Need way to free up CPU while waiting for GPU



AsynchronousAlgorithms

@ Add new type of Algorithm - AsynchronousAlgorithm
@ Informs the scheduler that algorithm offloads to GPU
@ Should not consume significant CPU time

@ Scheduled separately

@ Functionality to asynchronously wait for GPU



Possible Option: Overcommiting the CPU

@ Could run many more CPU threads than cores
e Threads would yield if still waiting

@ Syscalls for context switches are expensive
@ No control over spurious wakeups

@ Number of concurrent GPU algorithms limited by number of threads



Chosen Option: Fibers (/ lightweight threads / stackful coroutines)

@ Similar to threads but entirely in user space
e Cooperative multitasking - CPU work never interupted to check on GPU

@ Usermode context switches are faster
A context switch between threads costs usually thousands of CPU cycles
on x86 compared to a fiber switch with less than 100 cycles.
— Boost Fiber Documentation

@ Runtime can check if GPU is done - No spurious wakeups
@ Cheap to create fibers - Create as many as needed
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Design Details

@ Distinguish CPU and GPU algorithms in scheduler

@ Synchronous (CPU) algorithms routed to TBB thread pool

@ Asynchronous (GPU) algorithms launch new fibers on small Boost Fiber
thread pool

@ Asynchronous algorithms suspend (yield CPU) while waiting for GPU

@ Boost Fiber only re-schedules suspended fiber if GPU has returned data



CUDA Support

@ Not inherently CUDA specific, but implemented support
@ Able to await completion of CUDA stream

@ Fiber only awoken if stream is complete

e Stream creation and reuse is managed
@ Utilities to manage memory

@ Portal for allocating GPU memory

@ Throttle tasks if memory is full
e Use vecmem to wrap pinned memory allocation



Performance
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@ AsynchronousAlgorithms allow GPU work to run asynchronously
@ Implemented using Boost Fiber
e Reduces cognitive workload on users

@ Allows many simultaneous GPU algorithms on small number of CPU threads



Backup



Why Not Standard (stackless) Coroutines?

@ This implementation uses Boost Fiber, not C++ 20 standard coroutines
@ Coroutines would require manual implementation of re-scheduling etc.
e Get this all from Boost Fiber
@ Get GPU monitoring “for free”
@ Fibers fit well into existing design
@ Pretty similar to TBB tasks
@ Easier for users to write code to run in a fiber
e Can write an ordinary function, not a coroutine



Why Not oneTBB Tasks?

@ With oneTBB, can suspend tasks, however:
@ Still need to support TBB 2020
@ Boost Fiber has built-in support for CUDA (and HIP)

@ Useful to separate out CPU work



