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Fast shower simulation

FullSim FastSim 
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Motivation

Make FastSim easily available without access to ML expertise.
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● Development of machine learning models for fast shower simulation is computationally 

expensive.

● Moreover, designing model for each experiment requires dedicated expertise.

1. Generic energy scoring mesh [guide]

○ Collect energy irrespective of the detector geometry.

○ Ready to use models. (Requires training)

2. Generalizable ML model

○ Train once on very large & diverse datasets to learn rich representations.

○ Then adapt to new detectors, quickly.

https://g4fastsim.web.cern.ch/docs/MetaHEP/Step01_generate


Energy scoring

● The mesh aligns with the direction of incident particle.

○ The direction, i.e., the angles are recorded.
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A detector agnostic mesh is constructed to contain the largest shower.

● The size of the cells can vary across detectors according to its X
0

 & R
M

, but the 

number of cells remains constant1.

● Explored in LHCb [poster on 14th].

1 i.e., for a model

https://indico.cern.ch/event/1330797/contributions/5796650/


Generative model
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As for the architecture, we apply transformer blocks.

● A generalized architecture that works with any type of data, e.g., text, images, audio, etc.

● Models long-range dependencies (Attention mechanism).

We use a diffusion model for higher accuracy and higher diversity.

https://arxiv.org/abs/2112.07804



Model architecture
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Conditions:

1. Energy (1GeV to 1TeV)

2. Phi (azimuthal angle) - 0 to 2𝜋

3. Theta - 0.87 to 2.27

4. Geometry

The model:

● Diffusion steps = 400

● Embed dim = 144

● Cosine scheduler

https://arxiv.org/abs/2212.09748



Experiments
1. Training on single geometry

○ Par04 (CaloChallenge1), simplistic cylindrical geometry

○ 1M samples

71 More samples and more conditions (phi, theta) compared to CaloChallenge

2. Joint training on multiple geometries

○ Par04 and Open Data Detector (ODD, realistic geometry)

○ 1M samples each

○ Geometry condition - one hot encoding

3. Adaptation on FCCeeALLEGRO

○ Checkpoint from 2

○ Baseline - training from scratch

○ 100K, 200K, 400K samples in each case

Note: The results are preliminary

https://gitlab.cern.ch/acts/OpenDataDetector
https://indico.cern.ch/event/1307378/contributions/5727166/


1. Training on single geometry
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Par04

● Good accuracy with 

diffusion models

● Even cell energy



2. Joint training
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Par04

● Almost no degradation after 

adding geometry condition

● Even if there was, not  intended 
to use directly
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FCCeeALLEGRO

250 epochs for training from scratch

20 epochs for adaptation

400K samples 200K samples 100K samples

At 200K samples

~25x less training time

<50% of the data

Preliminary results

3. Adaptation



Conclusion
● We present a framework for detector agnostic fastsim model, which can be easily adapted 

to new detectors.

● Initial results are very promising which significantly reduces the required statistics, and 

training time from days to just a couple of hours1.

Future work:

● Pretraining on more geometries.

● Improvements revolving diffusion method and model architecture.

● Faster inference via distillation.

● Testing our framework in experiments.

○ The mesh is already implemented in Gaussino and DD4hep.

○ Work started for ATLAS

111 Depending on the model size of course

https://gitlab.cern.ch/fastsim/ddfastsim


Thank you for listening!

Questions?

piyush.raikwar@cern.ch
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mailto:piyush.raikwar@cern.ch


Backup
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Transformer

Attention is all you need

https://arxiv.org/abs/1706.03762

● Proposed for sequence-to-sequence tasks.

● I/O is any type of sequences.

● Encoder-Decoder blocks.

● Positional embeddings.

● Attention: Dynamically focus on important parts 

in the input.

● Multi-headed attention.
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https://arxiv.org/abs/1706.03762


Attention in transformers

● Dynamically focuses on important parts in the input.

● Helps in modelling correlations between energy deposits.

15Vaswani et al. Attention is All you Needhttps://distill.pub/2016/augmented-rnns/

Attention scores

O/P French

I/P English

https://arxiv.org/abs/1706.03762
https://distill.pub/2016/augmented-rnns/


Transverse profiles - Par04

161 Will depend on individual case

Single geometry training

Joint training



Joint training - ODD
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ODD

FCCeeAllegro


