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Motivation

e Development of machine learning models for fast shower simulation is computationally
expensive.

e Moreover, designing model for each experiment requires dedicated expertise.

Make FastSim easily available without access to ML expertise. ]

1.  Generic energy scoring mesh [guide]
o  Collect energy irrespective of the detector geometry.

o  Ready to use models. (Requires training)

2. Generalizable ML model
o  Trainonce on very large & diverse datasets to learn rich representations.

o  Then adapt to new detectors, quickly.



https://g4fastsim.web.cern.ch/docs/MetaHEP/Step01_generate

Energy scoring

A detector agnostic mesh is constructed to contain the largest shower.
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e The mesh aligns with the direction of incident particle.
o  Thedirection,i.e., the angles are recorded.
e  Thesize of the cells can vary across detectors according to its X, &R, but the
number of cells remains constant?.

e ExploredinLHCb [poster on 14t"].

lj.e. for amodel


https://indico.cern.ch/event/1330797/contributions/5796650/
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As for the architecture, we apply transformer blocks.

e Ageneralized architecture that works with any type of data, e.g., text, images, audio, etc.

e Models long-range dependencies (Attention mechanism).

https://arxiv.org/abs/2112.07804



Model architecture

Conditions:
1.  Energy(1GeV to 1TeV)
2. Phi(azimuthal angle) - 0to 2%
3. Theta-0.87t0227
4,  Geometry
The model:
° Diffusion steps = 400
° Embeddim =144
e  Cosine scheduler

https://arxiv.org/abs/2212.09748
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Experiments

1. Training onsingle geometry
o  Par04 (CaloChallenge?), simplistic cylindrical geometry

o 1Msamples

2. Joint training on multiple geometries
o  ParO4 and Open Data Detector (ODD, realistic geometry)
o 1M samples each
o  Geometry condition - one hot encoding
3. Adaptation on FCCeeALLEGRO
o  Checkpoint from 2

o  Baseline - training from scratch

o 100K, 200K, 400K samples in each case

Note: The results are preliminary

1 More samples and more conditions (phi, theta) compared to CaloChallenge


https://gitlab.cern.ch/acts/OpenDataDetector
https://indico.cern.ch/event/1307378/contributions/5727166/

1. Training on single geometry

Longitudinal profile, 4, Par04, 50GeV, ¢=0.0, §=1.57 Longitudinal first moment, v, Par04, 50GeV, ¢=0.0, 6=1.57  Longitudinal second moment, vy, Par04, 50GeV, ¢=0.0, 6=1.57
0:08 —e— Geantd —e— Geant4 0.010 —e— Geant4
Pa ro4 7 —a— Single training 0.08 —— Single training —— Single training
0.008
0.06
0.06
—~ 0.05 ;
S 0.006
= 2
-]
—0.04
’ = 0.04 =
v 0.03 0.004
Good accuracy with 002
T 0.02 f
. . 0.002
diffusion models 001
Even cell energy 0.00 0.00 0.000
0 10 20 30 40 20 30 10 50 60 70 0 100 200 300 400 500 600
z (ID) < A > (mm) <> (mmz)
Energy deposited, v, Par04, 50GeV, ¢=0.0, =1.57 Cell energy distribution, v, Par04, 50GeV, ¢=0.2, =2.1 Cell energy distribution, +, Par04, 500GeV, ¢=0.0, §=1.57
—e— Geantd 10° 10
. —e— Geantd —e— Geantd
""" = E =4840 —s— Single training —s— Single training
—+— Single training
oo [N/ | < B> = 48160.46
10! 10!
0.0003
102 102
10 10
0.0001 10~ 10~
0.0000 10-° 1070 T
16000 47000 18000 19000 50000 51000 3 ) 7 ) 1 3 3 1 iy ) 7 ) 1 3 3 1
Eup log10(E//MeV) log10(E//MeV)



2. Joint training
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3. Adaptation

FCCeeALLEGRO

250 epochs for training from scratch

20 epochs for adaptation

At 200K samples
~25x less training time
<50% of the data
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Conclusion

e We present aframework for detector agnostic fastsim model, which can be easily adapted
to new detectors.
e Initial results are very promising which significantly reduces the required statistics, and

training time from days to just a couple of hours™.

Future work:
e Pretraining on more geometries.
e Improvements revolving diffusion method and model architecture.
e  Fasterinference viadistillation.
e  Testing our framework in experiments.
o  Themeshis already implemented in Gaussino and DD4hep.
o  Work started for ATLAS

! Depending on the model size of course 11


https://gitlab.cern.ch/fastsim/ddfastsim

Thank you for listening!

Questions?

pivush.raikwar@cern.ch
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Transformer

e Proposed for sequence-to-sequence tasks.
e |/Ois any type of sequences.
e Encoder-Decoder blocks.

e Positional embeddings.

e Attention: Dynamically focus on important parts

in the input.

e Multi-headed attention.

Output

Probabilities

Attention is all you need
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https://arxiv.ora/abs/1706.03762
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https://arxiv.org/abs/1706.03762

Attention in transformers

I' accord sur la zone économique européenne a été signé en ao(t 1992 . <end>
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I/P English the agreement on the European Economic Area was signed in August 1992 . <end>

e Dynamically focuses on important parts in the input.

e Helpsin modelling correlations between energy deposits.

https://distill.pub/2016/augmented-rnns/ Vaswani et al. Attention is All you Need
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Single geometry training

Joint training

Transverse profiles - Paro4

Transverse profile, v, Par04, 50GeV, ¢=0.2, §=2.1

Transverse first moment, «, Par04, 50GeV, ¢=0.2, =2.1

Transverse second moment, v, Par04, 50GeV, ¢=0.2, §=2.1

102

~10-1

< E > (MeV

102

—e— Geant4 5 —e— Geant4 0.16 —e— Geantd
—— Single training o —+— Single training —— Single training
0.14
2
L0 0.12
0.10
2 1.5 @
£ 2
£ = 0.08
[ @
10 0.06
0.04
0.5
0.02
0.0 0.00
0 2 1 6 8 0 1 2 3 1 5 20 25 30 35 10 15 50
r(ID) <r > (mm) <r? > (mm?)
Transverse profile, 4, Par04, 50GeV, ¢=0.2, §=2.1 Transverse first moment, v, Par04, 50GeV, ¢=0.2, §=2.1 Transverse second moment, v, Par04, 50GeV, ¢=0.2, §=2.1
—e— Geant4 35 —e— Geant4 0.16 —e— Geantd
—a— Single training -0 —— Single training —+— Single training
—»— Joint training —»— Joint training 0.14 —»— Joint training
2
& 0.12
0.10
£0.08
<3]
0.06
0.04
0.5
0.02
0.0 0.00 ,
0 2 1 6 8 0 1 2 3 4 5 20 25 30 35 10 45 50 1 6
1(ID) <7 > (mm) 2 > (mm?)



Joint training - ODD
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