AdaptivePerf: a portable, low-overhead, and comprehensive code profiler for singleand multi-threaded applications

Maksymilian Graczyk (CERN), Stefan Roiser (CERN)

What is AdaptivePerf?

- **Open-source code profiler** for Linux, based on "perf" with custom patches
- Traces every spawned thread and process
- Samples **both on-CPU and off-CPU** activity
- Main functionality designed with hardware portability in mind
- Supports custom sampling-based "perf" events for profiling interactions with hardware Detects automatically inappropriate kernel and CPU configurations

How does it compare to similar maintained profilers?

	Hardware -vendor- portable	Profiles software- hardware interaction*	Low profiling overhead	Open- source	Off-CPU profiling	Heterogeneous architecture support
AdaptivePerf	Yes	Yes	Yes	Yes	Yes	Planned!
Original "perf"	Yes	Yes	Yes	Yes	Limited	No
Intel VTune Profiler	No	Yes	Yes	No	Yes	Intel GPUs/FPGAs only
AMD µProf	No	Yes	Yes	No	Yes	AMD GPUs only
valgrind	Yes	No	No	Yes	No	No
gprof	Yes	No	Needs Cl**	Yes	No	No
gperftools	Yes	No	Needs Cl**	Yes	No	No
NVIDIA profilers	No	Yes	No	No	Yes	NVIDIA GPUs only

*If supported by a user's hardware architecture. **Code instrumentation other than not omitting frame pointers.

Envisaged applications

- Profiling physics data analysers and simulators (e.g. ROOT, Madgraph5, Geant4)
- Profiling software used for online and offline computing at physics experiments
- Software-hardware co-design (e.g. RISC-V core customisation done in the SYCLOPS EU project, triggering and DAQ system development at the LHC experiments)
- And more!

Fixes "perf"'s broken stacks (compiling a tested program with frame pointers required)

Produces interactive flame graphs and charts viewable in a web browser

Allows TCP streaming of profiling data to a separate machine for real-time processing

Developed in the context of the SYCLOPS project, which is funded by the European Union HE research and innovation programme under grant agreement No 101092877.

entoo-profiling1] tutorial.sh (2024-03-01 13:45:21

graphs

Screenshots as of 4 March 2024. AdaptivePerf is in beta and evolving, so it may differ now.

Planned improvements

• Profiling wide-ranged heterogeneous architectures (RISC-V, GPUs, FPGAs, TPUs, and other accelerators) in a maximally open-source way • Matching non-sampling-based metrics (such as power consumption) to code segments • Removing or weakening the frame pointer compilation requirement • Other feedback and suggestions for improvements are welcome!

Scan me for the information slides + the download instructions or ask for a demo! You can also send a message: maksymilian.graczyk@cern.ch

