

Finanziato dall'Unione europea **NextGenerationEU**

Quasi interactive analysis of High Energy Physics big data with high throughput

Tommaso Diotalevi^{1,3}, Francesco Giuseppe Gravili^{1,7}, Muhammad Anwar², Matteo Bartolini^{1,5}, Antimo Cagnotta^{1,6}, Adelina D'Onofrio¹, Paolo Mastrandrea¹, Gianluca Sabella^{1,6}, Federica Maria Simone^{1,2}, Bernardino Spisso¹, Alessandro Tarasio⁴, <u>Tommaso Tedeschi¹</u>

Motivation

The upcoming high-luminosity phase at the CERN Large Hadron Collider (LHC) and at future accelerator facilities will require an increasing amount of computing resources [1].

HEP analysis performance evaluation

Evaluating the performance of several High Energy Physics analyses from different experiments, using an approach based on the one described in [2]

Access and security

Deployment

mm

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputin

The Dask cluster is deployed on the Kubernetes (K8s) cluster using the Dask Operator [11] (a service that runs on your K8s cluster and allows to create and manage Dask clusters as K8s resources) through dask_kubernetes.operator.KubeCluster class, which provides a simple Python API to manage the cluster and allowing maximum flexibility for the end-user. The deployment of such cluster can be done:

- either via the Dask Labextension (which implements a convenient GUI to create, scale and delete Dask clusters)
- or via CLI/notebook cell (this allows to better customize your cluster, choosing images, scheduler and workers resource requests, etc...).
- In both cases, the user needs to instantiate a dask.distributed Client object to interact with the scheduler and start the computation.

The Dask Labextension [12] plugin allows to interact with the Dask dashboard directly in the Jupyterlab session, getting access to useful monitoring panels.

2 Cluster map

Dask Dashboard 1 Monitoring workers

gResults

- 2. T. Tedeschi, V. E. Padulano, D. Spiga, D. Ciangottini, M. Tracolli, E. T. Saavedra, E. Guiraud, M. Biasotto, Prototyping a ROOT-based distributed analysis workflow for HL-LHC: The CMS use case, Computer Physics Communications, Volume 295, 2024, 108965.
- https://root.cern/doc/master/classROOT 1 1RDataFrame.html
- https://jupyterlab.readthedocs.io/en/latest
- https://docs.dask.org/en/stable/
- https://gitlab.cern.ch/cms-analysis/general/mkShapesRDF
- https://jupyterhub.readthedocs.io/en/stable/
- https://github.com/indigo-iam/iam 8.
- https://helm.sh/ 9.
- https://github.com/ICSC-Spoke2-repo/HighRateAnalysis-WP5 10.
- https://kubernetes.dask.org/en/latest/operator.html
- https://github.com/dask/dask-labextension 12.
- https://www.influxdata.com/ 13.

1: INFN - Istituto Nazionale di Fisica Nucleare 2: Polytechnic of Bari 3: University of Bologna	5: University of Firenze 6: University of Naples 7: University of Salento	*
4: University of Calabria	7. University of Salento	

This work is supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU

22nd International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2024)

Stony Brook, NY, USA - 11-15/03/2024