
22nd International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2024) Stony Brook, NY, USA - 11-15/03/2024

1: INFN - Istituto Nazionale di Fisica Nucleare
2: Polytechnic of Bari
3: University of Bologna
4: University of Calabria

Quasi interactive analysis of High Energy Physics big data with high throughput
Tommaso Diotalevi1,3, Francesco Giuseppe Gravili1,7, Muhammad Anwar2, Matteo Bartolini1,5, Antimo Cagnotta1,6, Adelina D’Onofrio1, Paolo Mastrandrea1,
Gianluca Sabella1,6, Federica Maria Simone1,2, Bernardino Spisso1, Alessandro Tarasio4, Tommaso Tedeschi1

High Rate platform

User Interface

Deployment

Distributing the workload

This work is supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing,
Big Data and Quantum Computing, funded by European Union – NextGenerationEU

1. https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputin
gResults

2. T. Tedeschi, V. E. Padulano, D. Spiga, D. Ciangottini, M. Tracolli, E. T.
Saavedra, E. Guiraud, M. Biasotto, Prototyping a ROOT-based
distributed analysis workflow for HL-LHC: The CMS use case,
Computer Physics Communications, Volume 295, 2024, 108965.

3. https://root.cern/doc/master/classROOT_1_1RDataFrame.html
4. https://jupyterlab.readthedocs.io/en/latest
5. https://docs.dask.org/en/stable/
6. https://gitlab.cern.ch/cms-analysis/general/mkShapesRDF
7. https://jupyterhub.readthedocs.io/en/stable/
8. https://github.com/indigo-iam/iam
9. https://helm.sh/

10. https://github.com/ICSC-Spoke2-repo/HighRateAnalysis-WP5
11. https://kubernetes.dask.org/en/latest/operator.html
12. https://github.com/dask/dask-labextension
13. https://www.influxdata.com/

References

Motivation

The upcoming high-luminosity phase at the CERN Large Hadron Collider (LHC) and at future accelerator facilities will require an increasing amount of computing resources [1].

Higher rates of collision events Higher demand for computing and storage resources

To better analyse this increasing amount of Big Data:

● Optimize the usage of CPU and storage;
● Promote the usage of better data formats;
● Develop new analysis paradigms!

● New software based on declarative
programming and interactive workflows;

● Distributed computing on geographically
separated resources.

The user interface is based on Jupyterlab, customised
with specific plugins for specific purposes (e.g. Dask).

The working environment is highly customizable, using
tailored Docker containers. This is important when
analyses require specific software (collaboration-wise).

The deployment of the Kubernetes resources needed
for the spawning of this platform, is handled via HELM
[9] charts available in the GitHub organization [10].

This allows a seamless, flexible, scalable and
fault-tolerant deployment on the available resources,
with a limited impact on the admin’s work time.

Monitoring

The platform is monitored using in-site metrics gathered
and displayed using InfluxDB [13].

Access and security
After connecting to an entrypoint URL, the user reaches a
Jupyterhub [7] instance that, after authentication and
authorization via INDIGO-IAM [8], allocates the required
resources for the user’s working area.

The Dask cluster is deployed on the Kubernetes (K8s) cluster
using the Dask Operator [11] (a service that runs on your K8s
cluster and allows to create and manage Dask clusters as K8s
resources) through dask_kubernetes.operator.KubeCluster
class, which provides a simple Python API to manage the cluster
and allowing maximum flexibility for the end-user.
The deployment of such cluster can be done:
● either via the Dask Labextension (which implements a

convenient GUI to create, scale and delete Dask clusters)
● or via CLI/notebook cell (this allows to better customize your

cluster, choosing images, scheduler and workers resource
requests, etc…).

In both cases, the user needs to instantiate a dask.distributed
Client object to interact with the scheduler and start the
computation.

The Dask Labextension [12] plugin allows to interact with the Dask dashboard
directly in the Jupyterlab session, getting access to useful monitoring panels.

Dask Dashboard Monitoring workers

CLUSTER MAP

WORKERS

2

Cluster map1 2

1

…
multi-tenant

ecb272

scheduler

worker

ecb272 ecb272

Dask KubeCluster Dask KubeClusterDask KubeCluster

Check the docs!

HNL Run2 search

Analysis made on ROOT RDataFrame [3] v6.27

with distributed features

for DASK compatibility

The same analysis workflow, running on an increasing number of
workers shows a decrease in execution time.

● As expected, low number of workers show a CPU usage saturation;
● For a high number of workers, network access becomes the

bottleneck (due to IO access, via protocols like xRootd/WebDAV).

Evaluating the performance of several High Energy Physics analyses from different experiments, using an approach based on the one described in [2]

Zee simulations at Future Colliders (FCCee)

● Considering the overall execution time as metric and running the
same workflow, there is a performance improvement in the
distributed approach wrt the standard/serial approach;

● Moreover, it was tested that scaling resources, the performance
further improves.

Feasibility study: Mimic systematic variations applying a gaussian
smearing to e+e− energies many times.

VLQ search

● The test has been performed on 5 MC files (~3GB).

CI pipeline triggering analysis execution on Analysis Facility

● Initial work setting up a CI pipeline
running a full CMS (mkShapesRDF[6]
framework-based) analysis on an
HTCondor-based high-rate facility
platform;

● Plan to start experimenting soon the
use of Dask to improve handling and
merging of the full dataset.

Preliminary results

Events selection and
histogramming:
interactively with ROOT
RDataFrame and Jupyterlab [4]

Dask [5] used as backend.

● Increasing the number of workers shows a decrease
in execution time (from 3min to around 47s);

● After a certain number of workers, the execution
time saturates (as shown in other applications).

Preliminary results

test made on 69GB Run2 data

Preliminary results

HEP analysis performance evaluation

5: University of Firenze
6: University of Naples
7: University of Salento

● Analysis made with ROOT RDataFrame v6.27;
● As performance study, we tried to increase the number of workers using

the same workflow;

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://doi.org/10.1016/j.cpc.2023.108965
https://doi.org/10.1016/j.cpc.2023.108965
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://jupyterlab.readthedocs.io/en/latest
https://docs.dask.org/en/stable/
https://gitlab.cern.ch/cms-analysis/general/mkShapesRDF
https://jupyterhub.readthedocs.io/en/stable/
https://github.com/indigo-iam/iam
https://helm.sh/
https://github.com/ICSC-Spoke2-repo/HighRateAnalysis-WP5
https://kubernetes.dask.org/en/latest/operator.html
https://github.com/dask/dask-labextension
https://www.influxdata.com/

