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Motivation

The upcoming high-luminosity phase at the CERN Large Hadron Collider (LHC) and at future accelerator facilities will require an increasing amount of computing resources [1].

Higher rates of collision events Higher demand for computing and storage resources 

To better analyse this increasing amount of Big Data:

● Optimize the usage of CPU and storage;
● Promote the usage of better data formats;
● Develop new analysis paradigms!   

● New software based on declarative 
programming and interactive workflows;

● Distributed computing on geographically 
separated resources.

The user interface is based on Jupyterlab, customised 
with specific plugins for specific purposes (e.g. Dask).

The working environment is highly customizable, using 
tailored Docker containers. This is important when 
analyses require specific software (collaboration-wise).

The deployment of the Kubernetes resources needed 
for the spawning of this platform, is handled via HELM 
[9] charts available in the GitHub organization [10].

This allows a seamless, flexible, scalable and 
fault-tolerant deployment on the available resources, 
with a limited impact on the admin’s work time.

Monitoring

The platform is monitored using in-site metrics gathered 
and displayed using InfluxDB [13].

Access and security
After connecting to an entrypoint URL, the user reaches a 
Jupyterhub [7] instance that, after authentication and 
authorization via INDIGO-IAM [8], allocates the required 
resources for the user’s working area. 

The Dask cluster is deployed on the Kubernetes (K8s) cluster 
using the Dask Operator [11] (a service that runs on your K8s 
cluster and allows  to create and manage Dask clusters as K8s 
resources) through dask_kubernetes.operator.KubeCluster 
class, which provides a simple Python API to manage the cluster 
and allowing maximum flexibility for the end-user.
The deployment of such cluster can be done: 
● either via the Dask Labextension (which implements a 

convenient GUI to create, scale and delete Dask clusters) 
● or via CLI/notebook cell (this allows to better customize your 

cluster, choosing images, scheduler and workers resource 
requests, etc…).

In both cases, the user needs to instantiate a dask.distributed 
Client object to interact with the scheduler and start the 
computation.

The Dask Labextension [12] plugin allows to interact with the Dask dashboard 
directly in the Jupyterlab session, getting access to useful monitoring panels.
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Check the docs!

HNL Run2 search

Analysis made on ROOT RDataFrame [3] v6.27

with distributed features 

for DASK compatibility 

The same analysis workflow, running on an increasing number of 
workers shows a decrease in execution time.

● As expected, low number of workers show a CPU usage saturation;
● For a high number of workers, network access becomes the 

bottleneck (due to IO access, via protocols like xRootd/WebDAV).

Evaluating the performance of several High Energy Physics analyses from different experiments, using an approach based on the one described in [2]

Zee simulations at Future Colliders (FCCee) 

● Considering the overall execution time as metric and running the 
same workflow, there is a performance improvement in the 
distributed approach wrt the standard/serial approach;

● Moreover, it was tested that scaling resources, the performance 
further improves.

Feasibility study: Mimic systematic variations applying a gaussian 
smearing to e+e− energies many times.

VLQ search

● The test has been performed on 5 MC files (~3GB).

CI pipeline triggering analysis execution on Analysis Facility

● Initial work setting up a CI pipeline 
running a full CMS (mkShapesRDF[6] 
framework-based) analysis on an 
HTCondor-based high-rate facility 
platform;

● Plan to start experimenting soon the 
use of Dask to improve handling and 
merging of the full dataset.

Preliminary results

Events selection and 
histogramming: 
interactively with ROOT 
RDataFrame and Jupyterlab [4] 

Dask [5] used as backend.

● Increasing the number of workers shows a decrease 
in execution time (from 3min to around 47s);

● After a certain number of workers, the execution 
time saturates (as shown in other applications).

Preliminary results

test made on 69GB Run2 data

Preliminary results

HEP analysis performance evaluation
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● Analysis made with ROOT RDataFrame v6.27;
● As performance study, we tried to increase the number of workers using 

the same workflow;

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://doi.org/10.1016/j.cpc.2023.108965
https://doi.org/10.1016/j.cpc.2023.108965
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://jupyterlab.readthedocs.io/en/latest
https://docs.dask.org/en/stable/
https://gitlab.cern.ch/cms-analysis/general/mkShapesRDF
https://jupyterhub.readthedocs.io/en/stable/
https://github.com/indigo-iam/iam
https://helm.sh/
https://github.com/ICSC-Spoke2-repo/HighRateAnalysis-WP5
https://kubernetes.dask.org/en/latest/operator.html
https://github.com/dask/dask-labextension
https://www.influxdata.com/

