
22nd International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2024) Stony Brook, NY, USA - 11-15/03/2024

1: INFN - Istituto Nazionale di Fisica Nucleare
2: University of Pisa
3: Scuola Normale Pisa

Declarative paradigms for analysis description and implementation
Alberto Annovi1, Tommaso Boccali1, Paolo Mastrandrea1, Andrea Rizzi1,2, Francesco Vaselli1,3

Multiple input-data formats

This work is supported by ICSC – Centro Nazionale di
Ricerca in High Performance Computing, Big Data and
Quantum Computing, funded by European Union –
NextGenerationEU

1. https://indico.cern.ch/event/769263/
2. https://en.wikipedia.org/wiki/Comparison_of_programming_paradigms
3. https://root.cern.ch//
4. https://root.cern/doc/master/classROOT_1_1RDataFrame.html
5. https://uproot.readthedocs.io/en/latest/
6. https://numpy.org/
7. https://github.com/arizzi/nail
8. https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038
9. https://cds.cern.ch/record/2857821

References

Motivation

The progress in the research in High Energy Physics (HEP) requires, among its main ingredients, the acquisition, storage and analysis of larger and larger data samples, pushing for the adoption and
development of state-of-the-art computing technologies.
The adoption of approaches able to exploit the new hardware architectures plays a pivotal role in boosting data processing speed, resources optimisation, analysis portability and analysis preservation.
The scientific collaborations in the field of HEP (e.g. the Large Hadron Collider experiments, the next-generation neutrino experiments, and many more) devote increasing resources to the development
and implementation of bleeding-edge software technologies, pushing the reach of the single experiment and the whole HEP community.
The introduction of declarative paradigms in the analysis description and implementation is gaining interest and support in the main collaborations [1]. This approach can simplify and speed-up the
analysis description phase, support the portability of an analysis among different datasets/experiments, and strengthen the preservation of the results.
Furthermore, this approach - providing a deep decoupling between the analysis algorithm and back-end implementation - is a key element for present and future processing speed.

A translation layer between the analysis declaration and the
backend processing can provide support for:
● input dataset encoded in different formats for the same

analysis
● transparent support for data-format evolution for the same

input dataset

The extraction of a valuable result from an input dataset
is usually based on procedures which require multiple
steps, each processing different kind of information and
different algorithms.
Full tracking of the processed steps, via hashing of the
processing steps, provide support for optimal
segmentation of the tasks, optimization of the
computing resources, optimization of the development
time and result preservation.

Example steps for the application of a declarative
paradigm to a full-chain simplified energy calibration
procedure:
● Sample preparation
● Event-by-event processing (e.g. NAIL)
● Snapshot/data reduction
● Combination / comparison of distributions
● Statistical analysis / Extraction of results
● Selective / incremental execution

○ for both development and production phases

Declarative analysis framework

Main features required for a declarative analysis framework:
● full set of declaration instructions able to describe the analysis

algorithms
● consistent and portable representation of the analysis
● interface with backend processors (e.g. ROOT[3], RDataFrame[4],

PyROOT[5], NumPy[6], …)

Features under development:
Extension to multiple input data-formats:
● translation layer between analysis description and backend processor

○ e.g. porting of analysis developed on nanoAOD [8] (CMS) to
PHYSLITE [9] (ATLAS)

Extension to full analysis chain:
● full set of declaration able to describe all analysis/combination tasks

Paradigms for analysis description and implementation

Support to different input-data formats:
extends portability and preservation

Ex
te

ns
io

n
to

 fu
ll

an
al

ys
is

ch
ai

n:
ex

te
nd

 a
dv

an
ce

d
pl

at
fo

rm

in
te

gr
at

io
n

an
d

ac
ce

le
ra

tio
n,

 p
or

ta
bi

lit
y

an
d

pr
es

er
va

tio
n

Full analysis chain

Data-format interface

In principle 3 equivalent data-formats are involved in an analysis process:
A. data-format used inside the framework for variables manipulation
B. data-format used in the description of the algorithm by the user
C. data-format used in the encoding of the input data to be processed

While A and B can easily be unified for most applications, C is experiment-dependent:
the introduction of a translation step is needed in order to provide
● extended analysis portability among datasets/experiments
● robust support for data-format evolution

Moving towards columnar analysis: the storage of event data as Structure of Arrays (SoA)
is generally preferred to the Array of Structures (AoS) due to better memory performance
and better support to parallelization and multi-threading.

SoA data representation for nanoAOD [8] format developed by the CMS experiment

Imperative paradigms have been preferred for analysis description and implementation
due to a more straightforward application for “simple” tasks and linear/serial computing
tools. What has changed in the last decade?
● hardware: parallelism/multithreading
● software: more expressive programming languages (Python, C++ 17/20/23)
● tasks: increased complexity, increased data size (analyses, combinations)

Benefits of a (more) declarative paradigm:
● Deeper decoupling between algorithm and implementation

○ Faster analysis development
○ Wider portability of an analysis (different datasets/experiments)
○ Stronger preservation of the results

● Better scaling of development and preservation for increasing complexity of the
algorithms and size of the data

● Better support for automatic (technical) optimisation
● Improve the support for parallelization of the tasks (multithreading/GPU)
● More flexibility: e.g. different backend processors

Wikipedia [2]

Working example: the Natural Analysis
Implementation Language (NAIL) [7], an
embedded declarative language, developed
in the context of the CMS collaboration,
implemented in Python and based on
nanoAOD [8] data format. NAIL allows to
specify the event-by-event processing
actions in a declarative form. Analysis
variations for optimizations and systematic
uncertainties evaluation are automatically
derived from the event processing
computational graph. Currently ROOT's
RDataFrame is used as backend for a
concrete implementation of the event
processing, supporting parallelization and
lazy evaluation. Analysis definition

Input dataset

Translated
Analysis definition

Processor (backend)

Result

Translation

https://indico.cern.ch/event/769263/
https://en.wikipedia.org/wiki/Comparison_of_programming_paradigms
https://root.cern.ch//
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://uproot.readthedocs.io/en/latest/
https://numpy.org/
https://github.com/arizzi/nail
https://iopscience.iop.org/article/10.1088/1742-6596/1525/1/012038
https://cds.cern.ch/record/2857821

