Real-time track reconstruction with FPGAs in LHCb Scintillating Fibre Tracker beyond Run 3

Ao Xu et al. on behalf of the LHCb Collaboration

22nd International Workshop on Advanced Computing and Analysis Techniques in Physics Research

March 14, 2024

Motivation

- LHCb: largest throughput in HEP
- High memory-access tasks more
 efficiently performed in dedicated devices
 - Envision a system where pattern recognition is performed within readout
 - Kick off High Level Trigger with pre-reconstructed primitives (array of aligned hits)
 - Free HLT for higher-level tasks
- FPGA most suitable technology
 - Sufficient programmable logic
 - High bandwidth
 - Can be more energy-efficient

LHCb Upgrade tracking

- Current HLT1 reconstructions focus on Long tracks
 - Run 2 based on Forward tracking
 - Run 3 benefits also from Matching
- Add Downstream tracks to HLT1
 - Expand the LHCb physics program
 - See previous talk [V. Svintozelskyi]
- DoWnstream Tracker will provide HLT1 with pre-formed T-track primitives in FPGA
 - Make room for Downstream tracking and other desirable enhancements

Throughput gain with DoWnstream Tracker

HLT1 sequence hlt1_pp_matching

Throughput in RTX A5000 (kHz)

- Default sequence
 - Total (T-track reconstruction): $7.2 \,\mu s \, (1.5 \,\mu s)$
- With T-track primitives from DWT
 - Total (Primitives decoding and refitting): $5.4 \,\mu s \, (0.06 \,\mu s)$
- Throughput increased by a factor of 1.33

LHCb Scintillating Fibre Tracker

- **Three** tracking stations: T1, T2, T3
- Each consists of four detection planes: oriented $(0^{\circ}, +5^{\circ}, -5^{\circ}, 0^{\circ})$
 - Modules have 2.5 m long scintillating fibres with a diameter of $250\,\mu m$ read out by SiPMs
 - Measurements of the co-ordinates (x, u, v, x)

Simulation infrastructure for physics performance

- LHCb Upgrade simulation
 - Default Run 3 and 4 condition: $E = 7 \,\mathrm{TeV}$, bunch $25 \,\mathrm{ns}$, $\nu = 7.6$
 - Samples: Minimum Bias, $D^0 o K^0_{
 m s} \pi^+ \pi^-$, $B^0_s o \phi \phi$

DoWnstream Tracker emulator

- C++ software emulator of an FPGA-based system for reconstruction of T-track primitives
- Use integers to emulate the firmware implementation at bit-level

Artificial retina architecture

- Architecture for real-time reconstruction by extreme parallelism and high connectivity
 - Computation similar to Hough transform
- Data flow
 - Input from detector and data preparation
 - Distribution network
 - Switch: routes hits only to appropriate cells using lookup tables
 - Optical communication: exchanges hits between boards
 - Cell engine and max-finder
 - Primitive tracks are forwarded to the Event Builder

Reconstruction of axial T-track primitives

- Emulate in detail the same steps of the hardware system
 - 1. Axial (x-z plane) track parametrisation
 - ► (x̃₀, x̃₁₁): x-coordinates at the first and last SciFi layer
 - # of pattern cells for SciFi: 2×73k
 - 2. Weight accumulation

$$w = \sum_{hits} \exp\left(-\frac{(x_l - t_l)^2}{2\sigma}\right)$$
for $|x_l - t_l| < d_s$

- Identification of local maxima (axial track primitives)
 - Maximum above threshold in the centered 3 × 3 cluster

Ghost removal with axial track fit

- Linearised χ^2 fit for false maxima removal
- Parabolic model with cubic correction [1, 2]
 x(z) = a_x + b_x × z + c_x × z² × (1 + dRatio × z)
- For each local maximum determine the best fit over combinations of
 - 5 different axial layers out of 6
 - 1 out of 2 candidate hits on each layer

ACAT 2024

Reconstruction of 3D T-track primitives

- Emulate in detail the same steps of the hardware system
 - 1. Stereo (y-z plane) track parametrisation
 - \tilde{y} : y-coordinate at the middle of SciFi
 - # of bins per axial track: 45
 - $2. \ u/v \ hits \ distribution$
 - Good axial track candidate \longleftrightarrow Binned parametric space $x_{\text{pred},u/v} \xrightarrow{x_{\text{pred},u/v} - y \times \tan \alpha} x_{\text{meas},u/v}$
 - Identification of local maxima (stereo track primitives)
 - Maximum above threshold in 1D histrogram

ACAT 2024

Ghost removal with stereo track fit

- Linearised χ^2 fit for false maxima removal
- Straight line: $y(z) = a_y + b_y \times z$
- For each local maximum determine best fit over combinations of
 - 5 different stereo layers out of 6
 - 1 out of all candidate hits on each layer
- 3D track primitives filtered with (χ^2_A, χ^2_S) requirement
 - Linear cut for illustration of performance

Physics tracking performance of T-track primitives

- \blacksquare Fiducial requirements: $p_{\rm T} > 200 \, {\rm MeV}$ and $2 < \eta < 5$
- Efficiencies comparable with <u>GPU-HLT1</u> and CPU-HLT2 Seeding
 - Higher efficiencies could be achieved with looser χ^2 requirements
- Ghost rate is under control
 - As a reference: below 15% (6%) for GPU-HLT1 tracking

Track type	MinBias	$D^0 \rightarrow K^0_S \pi^+ \pi^-$	$B_s^0 \to \phi \phi$
Long, $p > 3 \mathrm{GeV}/c$	85 (86)	83 (84)	84 (85)
Long, $p > 5 \mathrm{GeV}/c$	90 (91)	89 (90)	89 (89)
Long from B not e^{\pm} , $p>3{ m GeV}/c$	-	-	88 (87)
Long from B not e^{\pm} , $p > 5~{ m GeV}/c$	-	-	90 (90)
Down, $p > 3 \text{GeV}/c$	84 (85)	83 (84)	83 (84)
Down, $p > 5 \mathrm{GeV}/c$	89 (91)	88 (89)	88 (89)
Down from strange not e^\pm , $p>3{ m GeV}/c$	-	83 (83)	-
Down from strange not e^\pm , $p>5{ m GeV}/c$	-	88 (88)	-
Down from strange not long not e^\pm , $p>3{ m GeV}/c$	-	83 (83)	-
Down from strange not long not e^\pm , $p>5{ m GeV}/c$	-	88 (89)	-
ghost rate	16 (10)	17 (12)	17 (13)
ghost per real track	0.2 (0.1)	0.2 (0.1)	0.2 (0.1)

Event-averaged values shown in brakets

- Efficiency above 90% for high-momentum tracks
- Good efficiency for low-momentum ($p < 5 \,\mathrm{GeV}$) tracks
 - Essential for downstream tracks ($K^0_{
 m s}$ and Λ)

Occupancy dependence of performance

Robust scaling with occupancy

Resources and integration in LHCb Run 4 DAQ

- Number of FPGAs: 64 (axial) + 32 (stereo)
- DWT Boxes (up to 6 FPGA each) connected to SciFi EB nodes
- Modular, scalable, and minimal disturbance to current DAQ

Summary and outlook

- DoWnstream Tracker is an FPGA-based tracking system running at 30 MHz to reconstruct T-track primitives at pre-build stage
 - Initial study [ACAT2019] and preliminary result [CTD2023]
 - Aim to accelerate Downstream tracking by providing T-track primitives of good quality
 - Good physics performance of T-track primitives can be achieved
- Hardware demonstrator installed and tested with live data
 - Reconstruct a quadrant of the VELO detector in real-time
- TDR submitted to LHCC as part of LHCb DAQ Enhancement
 - 1. Develop the technique for Run 5 and beyond
 - 2. Bring physics enhancement to Run 4
- Optimisation ongoing with integration of LHCb trigger system
 - FPGA-based DWT + GPU-based HLT1 + CPU-based HLT2

BACKUP

LHCb RETINA team

Wander Baldini^{1,2}, Giovanni Bassi^{3,4}, Andrea Contu⁵, Riccardo Fantechi³, Jibo He^{6,7}, Brij Kishor Jashal⁸, Sofia Kotriakhova^{1,9}, Federico Lazzari^{3,10}, Maurizio Martinelli^{11,12}, Diego Mendoza⁸, Michael J. Morello^{3,4},
 Arantza De Oyanguren Campos⁸, Lorenzo Pica^{3,4}, Giovanni Punzi^{3,10}, Qi Shi⁶, Francesco Terzuoli^{3,13}, Giulia Tuci¹⁴, Ao Xu³, Jiahui Zhuo⁸

¹ INFN Sezione di Ferrara, Ferrara, Italy

² European Organization for Nuclear Research (CERN), Geneva, Switzerland

³ INFN Sezione di Pisa, Pisa, Italy

⁴ Scuola Normale Superiore, Pisa, Italy

⁵ INFN Sezione di Cagliari, Monserrato, Italy

⁶ University of Chinese Academy of Sciences, Beijing, China

⁷ Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China

⁸ Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain

⁹ Università di Ferrara, Ferrara, Italy

¹⁰ Università di Pisa, Pisa, Italy

¹¹ INFN Sezione di Milano-Bicocca, Milano, Italy

¹² Università di Milano Bicocca, Milano, Italy

¹³ Università di Siena, Siena, Italy

¹⁴ Physikalisches Institut, Ruprecht-Karls-Universitat Heidelberg, Heidelberg, Germany

Physics performance of axial T-track primitives

• Working point set for $\varepsilon = 90\%$ of long tracks with $p > 5 \,\mathrm{GeV}$

- Number of pattern cells for SciFi: 2×73k
- Efficiencies comparable with CPU-HLT2 Hybrid Seeding and GPU-HLT1 Seeding
- Ghost rate about 35% (25%) \implies 0.5 (0.4) fake track for each real track

For reference 22% of	(axial-only) GPU-H	LT1
----------------------	--------------------	-----

Track type	$\varepsilon(MinBias)$	$\varepsilon(D^0 \to K^0_S \pi^+ \pi^-)$	$\varepsilon(B_s^0 \to \phi \phi)$ [%]
T-track, $p > 3 \text{GeV}$	83 (85)	82 (83)	83 (84)
T-track, $p > 5 \mathrm{GeV}$	90 (91)	89 (90)	88 (89)
Long, $p > 3 \mathrm{GeV}$	86 (87)	84 (85)	85 (86)
Long, $p > 5 \mathrm{GeV}$	91 (92)	90 (91)	89 (90)
Long from B not e^{\pm} , $p>3{ m GeV}$	-	-	89 (88)
Long from B not e^{\pm} , $p>5{ m GeV}$	-	=	92 (91)
Down, $p > 3 \mathrm{GeV}$	85 (86)	83 (84)	84 (85)
Down, $p > 5 \mathrm{GeV}$	90 (91)	89 (90)	89 (90)
Down from strange not e^{\pm} , $p>3{ m GeV}$	-	83 (83)	-
Down from strange not e^\pm , $p>5{ m GeV}$	-	89 (89)	-
ghost rate [%]	32 (22)	35 (28)	35 (27)
ghost per real track	0.5 (0.3)	0.5 (0.4)	0.5 (0.4)

Event-averaged values are shown in parenthesis

Definition of efficiency and ghost rate

Event-integrated quantity

$$\begin{split} \varepsilon &\equiv \frac{\sum_{i} n_{\text{tracks,matched}}^{i}}{\sum_{i} n_{\text{tracks,reconstructible}}^{i}} \\ \text{ghost rate} &\equiv \frac{\sum_{i} n_{\text{tracks,reconstructed}}^{i}}{\sum_{i} n_{\text{tracks,reconstructed}}^{i}} \\ &= \sum_{i} \frac{n_{\text{tracks,reconstructed}}^{i}}{\sum_{i} n_{\text{tracks,reconstructed}}^{i}} \times \frac{n_{\text{tracks,unmatched}}^{i}}{n_{\text{tracks,reconstructed}}^{i}} \end{split}$$

Event-averaged quantity

$$\begin{split} \varepsilon &\equiv \sum_i \frac{1}{N_{\text{evt}}} \times \frac{n_{\text{tracks,matched}}^i}{n_{\text{tracks,reconstructible}}^i} \\ \text{ghost rate} &\equiv \sum_i \frac{1}{N_{\text{evt}}} \times \frac{n_{\text{tracks,unmatched}}^i}{n_{\text{tracks,reconstructed}}^i} \end{split}$$

Physics performance (axial): effciency VS momentum

• Working point set for $\varepsilon = 90\%$ of long tracks with $p > 5 \, {\rm GeV}$

ACAT 2024

Physics performance (axial): efficiency VS η and ϕ

• Working point set for $\varepsilon = 90\%$ of long tracks with $p > 5 \,\mathrm{GeV}$

