

ACTS as a Service

Yuan-Tang Chou¹, Haoran Zhao¹, Xiangyang Ju², Yao Yao³, Yongbin Feng⁴, Elham E Khoda¹, Andrew Naylor², Paolo Calafiura², Shih-Chieh Hsu¹, William Patrick McCormack⁵, Philip Coleman Harris⁵, Dylan Sheldon Rankin⁶, Kevin Pedro⁴, Miaoyuan Liu³

¹ University of Washington, ² LBNL,³ Purdue university, ⁴ Fermilab, ⁵ MIT, ⁶ University of Pennsylvania

Track reconstruction in HL-LHC

Track reconstruction is expected to be very challenging in high-density environments (HL-LHC).

Many great ideas to improve tracking with ML

- LLM tracking by <u>Xiangyang</u>
- ACORN GNN pipeline by <u>Daniel</u>
- ReGAN by Jay
- Learned Clustering by <u>Kilian</u>

All these ML applications can be accelerated by using coprocessors

How can we incorporate coprocessors into our computing model under the limited budget?

Tracking in ATLAS Event Filter

ATLAS is planning to upgrade the current High-level trigger farm to Event Filter with **commercial solution** at HL-LHC

- Heterogeneous devices (e.g., GPUs or FPGAs) with
 CPU to provide power saving and throughput increase
- The throughput and scalability are the key.
 - Expected to have ~300 k space points with ITK detector
 - Region-of-interest tracking at 1MHz
 - Full-scan tracking at 150 kHz

How can we enhance the scalability of the tracking workflow and make the integration much easier?

As a Service Computing Model

Heterogeneous Computing

"Direct connection"

• The most straightforward way to deploy algorithms on coprocessors is to run on machines with coprocessors

• However, **direct connection** can be inefficient and expensive at scale

• Need to matched the CPU-coprocessor ratio perfectly to fully utilized all the resource

As a Service Computing Model

Alternate coprocessor deployment scheme where coprocessor-enabled machines host an inference server and remote jobs send inference requests via network connection

The servers do not necessarily need to be remote; they can be just next to the client machine.

"Direct Connection"

Pros:

- Already have working example [1]

Cons:

- Can be an inefficient use of resources
- Expensive
- Machines without GPUs/FPGAs can't benefit from coprocessors

"As a Service Computing"

Pros:

- Factorized out the underlying backend implementation
- More straightforward to integrate with the **production framework** (e.g. Athena)
- Independent of the underlying technology choices and algorithms
- Better scalability and resource utilization (Reduce cost)

Cons:

- Adds complexity

ACTS as a Service

ACTS is an experiment-independent toolkit for charged particle track reconstruction in high energy physics experiments for both production and R&D [1]

Contains a full track reconstruction chain, which will be used in ATLAS for Run 4 offline tracking

TrkX

ACTS with GNN tracking (ExaTraX) Direct inference

- GNN Track Finding (ExaTrkX) [2] can run locally with CPU/GPU using TouchScript
- Track fitting using Kalman Filter (KF) still runs only on CPU
 - Ongoing effort to port the GPU-based KF developed in traccc project [3]

^[1] Acts - https://github.com/acts-project

[2] Performance of a Geometric Deep Learning Pipeline for HL-LHC Particle Tracking Eur. Phys. J. C 81, 876 (2021)

^[3] acts-project/traccc: Demonstrator tracking chain on accelerators

Integration of the ExaTrkX-as-a-Service to ACTS

Triton client added in ACTS to communicate with Triton Inference Server

We can offload more algorithm to coprocessor to increase the throughput

Multiple Model Instances Scaling

- Multiple inference instance run on one GPU
- Better utilization and higher throughput for one GPU

Multiple GPU Scaling

ExaTrkX custom backend

- Test with Triton inference server with 4 GPUs
 - Inference request distributed equally among the GPUs
 - Both client and server are at Perlmutter
- One model instance per GPU
- The throughput scale linearly and saturate with more than four concurrent requests

Performance of ACTS as a Service

Inference time: (ttbar PU=200, ODD)

CPU: 2x AMD EPYC 7763 CPUs, 64 cores per CPU GPU: 1x NVIDIA A100-SXM4-40GB (or 80GB)

No additional overhead was observed in the as-a-service inference

Avg inference time per events

Only ExaTrkX are offloaded to GPUs ~ 53 % of computing time in direct GPU

ACTS as a Service

Measure the throughput considering full ACTS tracking chain

- One GPU with one model instance
- The GPU saturate with more than 6 concurrent request

One NVIDA A100-40GB One Instance

of Client Concurrency

Network Latency over Remote Inference Servers

- The network latency from using a remote service:
 - Client: Perlmutter at LBNL
 - Triton servers: NRP at UCSD
- The Pods are deployed using K8 cluster
- Network latency: ~ 1.1 s

Direct distance = ~ 730 km

Kubernete approach

Summary

- We built the ExaTrkX-as-a-Service based on the NVIDIA Triton server and used ACTS as the first demonstrator.
- The result shows no overhead with aaS computing model for GNN tracking with better GPU utilization.

Outlook

An as-a-service computing model could increase tracking throughput regardless of the underlying algorithm/co-processor.

- Optimizable coprocessor-to-CPU ratios (cost-efficient)
- Increased throughput and better scalability
- Flexible technology choice and algorithm design
- Reduce complexity in integration

CMS has shown great advancement in using the as-a-service idea in ntuple production to offload ML algo to coprocessors server. See <u>Yongbin's</u> poster today

We are exploring the possibility of using this technology for offline and online tracking in ATLAS