
https://root.cern

ROOT
Data Analysis Framework

Accelerating Machine Learning Inference on
GPUs with SYCL using SOFIE

Lorenzo Moneta, Ioanna Panagou, Sanjiban Sengupta
Speaker: V. E. Padulano

ACAT 2024

https://root.cern

Machine Learning Inference
▶ Fast Evaluation of Machine Learning models is more and more relevant
▶ ML tools like Tensorflow/PyTorch have functionality for inference

▶ can run only for their models
▶ usage in a C++ environment can be cumbersome (API, dependencies etc.)

▶ A standard for describing deep learning models:
▶ ONNX (“Open Neural Network Exchange”)
▶ cannot describe all possible deep learning models (e.g. GNN) fully

▶ ONNXRuntime: an efficient inference engine based on ONNX
▶ can work in both C++ and Python
▶ supporting both CPU and GPU
▶ can be challenging to integrate in the HEP ecosystem

▶ control of threads, dependencies, etc..
▶ not optimised for single-event evaluation

2

Idea for Inference Code Generation

▶ An inference engine that…
● Input: trained ONNX model file

■ Common standard for ML models
■ Supported by PyTorch natively
■ Converters available for Tensorflow and Keras

● Output: C++ code of the inference function
■ Easy integration in other C++ projects
■ Minimal dependency (on BLAS only)
■ Can be compiled on the fly using Cling JIT

▶ SOFIE : System for Optimised Fast Inference code Emit
3

SOFIE

4

Code Generation

5

C++ code

namespace TMVA_SOFIE_Model{

struct Session {

 Session(std::string filename) {
 …………………..
 }
 std::vector<float> infer(float* input)
 {
 ………………….
 //— implementation of all operators
 ………………….

 return output_tensor;
 }
};
}

weight files

▶ Parser: from ONNX to SOFIE::RModel class
▶ RModel: intermediate model representation
using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("Model.onnx");

▶ Code Generation: from RModel to a C++ header  
and a weight file

// generate text code internally
model.Generate();
// write output header and data weight file
model.OutputGenerated();

Generated code depends only on BLAS (no ROOT)

▶ SOFIE generated code can be easily used in compiled C++ code

Using the Generated code: in C++

6
See full Example tutorial code

#include “Model.hxx”
// create session class
TMVA_SOFIE_Model::Session ses(“model_weights.dat”);
//—- event loop
for (ievt = 0; ievt < N; ievt++) {
 // evaluate model: input is a C float array
 auto input = GetInput();
 auto result = ses.infer(input);
 …..
}

1. include generated Model
header file

2. Create session class
(read weight data file)

3. Evaluate the model
calling Session::infer
function

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

▶ Code can be compiled using ROOT Cling and used in C++ interpreter
or Python

import ROOT
compile generate SOFIE code using ROOT interpreter
ROOT.gInterpreter.Declare(‘#include “Model.hxx”’)
create session class
s = ROOT.TMVA_SOFIE_Model.Session(‘model_weights.dat’)
#—- event loop
…….
evaluate the model , input can be a numpy array
of type float32
 result = s.infer(input)

Using the Generated code: in Python

7See full Example tutorial code

Compile at run-time  
SOFIE generated code  
using Cling

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

SOFIE Integration with RDataFrame
▶ SOFIE Inference code provides a Session class with this signature:

vector<float> ModelName::Session::infer(float* input);

▶ RDataFrame(RDF) interface requires a functor with this signature:
FunctorObj::operator()(T x1, T x2, T x3,….);

▶ Have a generic functor class adapting SOFIE signature to RDF: SofieFunctor<N,Session>
▶ supporting multi-thread evaluation, using the RDF slots

ROOT::RDataFrame df("tree", “inputDataFile.root”);
auto h1 = df.DefineSlot("DNN_Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),  
{"m_jj", "m_jjj", “m_lv", “m_jlv","m_bb","m_wbb","m_wwbb"}).  
Histo1D(“DNN_Value”);
h1->Draw();

8See full Example tutorial code in C++ or Python

https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8py.html

▶ Extend SOFIE functionality to produce GPU code using SYCL
// generate SYCL code internally
model.GenerateGPU();
// write output header and data weight file
model.OutputGeneratedGPU();

GPU Extension of SOFIE

9

model.hxx
namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
 if (filename.empty()) filename =
"Linear_event.dat";
 std::ifstream f;
 f.open(filename);
 // read weight data file
 …………………..
}
std::vector<float> infer(float*
tensor_input1){ with SYCL code

#include “Model.hxx”

// create session class

TMVA_SOFIE_Model::Session ses(“model_weights.dat”);

//—- event loop

for (ievt = 0; ievt < N; ievt++) {

 // evaluate model: input is a C float array

 float * input = event[ievt].GetData();

 auto result = ses.infer(input);

 …..

}

Inference code needs to be linked
against oneAPI MKL libraries and
compiled using SYCL compiler

What is SYCL ?
▶ SYCL is a single-source, high-level, standard C++ programming model
▶ can target a wide range of heterogeneous platforms (CPUs, GPUs, FPGAs)

10

C++ to SYCL

11

GPU Implementation

Performance considerations
▶ Minimise overhead of data transfers between host and device

▶ implement all on GPU and transfer data only at the beginning and at the
end of the computation

▶ Manage buffers efficiently, declaring them at the beginning
▶ Use libraries for GPU Offloading:

▶ GPU BLAS implementation from Intel oneAPI and portBLAS for other GPUs
▶ Fuse operators when possible (e.g. a layer op. with activation) in a

single kernel
▶ Whenever possible, avoid code branches

12

ONNX Supported Operators

13

Operators implemented in ROOT CPU GPU

Perceptron: Gemm ✓ ✓

Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu ✓ ✓

Convolution (1D, 2D and 3D) ✓ ✓

Recurrent: RNN, GRU, LSTM ✓

Pooling: MaxPool, AveragePool, GlobalAverage ✓ ✓

Deconvolution (1D,2D,3D) ✓ ✓
 Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity

✓ ✓
 Layer Binary operators: Add, Sum, Mul, Div

✓ ✓
Reshape, Flatten, Transpose, Squeeze, Unsqueeze, Slice,
Concat, Reduce, Gather ✓ ✓

 BatchNormalization, LayerNormalization ✓ ✓

Custom operator ✓

• current CPU
support available
in ROOT 6.30

• GPU/SYCL is
implemented in a
ROOT PR

https://github.com/root-project/root/pull/13550/

CPU Benchmark for Different Models

▶ Test event performance of SOFIE vs ONNXRuntime

14

Sm
al

le
r =

 B
et

te
r

DNN FastSim CNN 2D CNN 3D Resnet RNN LSTM RNN GRU CMS DDB
Deep Learning Models

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ti
m

e
re

la
tiv

e
to

 O
N

N
XR

un
tim

e

SOFIE

ONNXRuntime

Ubuntu 20.04 Intel 5000MHz (Batch Size = 1)
(using batch size = 1)

Performance on CPU vs GPU

15

Performance on GPU vs CPU (ResNet)

16

Using ResNet Model
(rather heavier model,
> 10 conv. layers with image
sizes ~ 200x200)

Varying Batch size

SOFIE for Graph Networks

▶ Added SOFIE support GNN models
▶ Initiated with a network developed by LHCb:

● Message Passing GNN built and trained using DeepMind’s 
Graph Nets library
● model plan to be used in LHCb trigger using full event

interpretation (see ACAT2024 contribution)
● important to have efficient implementation and with

minimal dependencies
● Available now in ROOT master

● support for a dynamic number of nodes/edges
17

https://indico.cern.ch/event/1330797/contributions/5796657/

SOFIE GNN Support
▶ Developed C++ classes for representing GNN structure.

● based on SOFIE RModel and the ROperator classes developed for
supporting ONNX.

● SOFIE classes provide the functionality to generate C++ inference code
▶ Python code (based on PyROOT) for initialising SOFIE classes from the

Graph Nets models

18

RModel_GNN

Graph Nets GNN

GNN Inference
▶ Final model is composed by several blocks

chained together
● SOFIE can generate C++ code for  

each single GNN block
● a C++ struct of RTensor’s represents the GNN

data flowing trough the model
● Users can stack the GNN blocks according to  

the desired architecture in the inference function for
the full model

19

Benchmark of SOFIE GNN

▶ Test inference performance of a toy architecture from LHCb
● scaling number of nodes and edges

20

Intel Linux Desktop MacOS M1

Summary

▶ SOFIE, fast and easy-to-use inference engine for Deep Learning models, is
available in ROOT
● Integrated with other ROOT tools (RDataFrame) for ML inference in end-user

analysis
● Support for several ONNX operators and also GNN
● A prototype implementation using SYCL has been developed

● Plan to extend to CUDA and/or ALPAKA
● Could also fit in the context of experiment GPU trigger systems

▶ Future developments according to user needs and the received feedback
▶ Supporting production model from experiments (GNN and transformers)

21

Example Notebooks and Tutorials

▶ Example notebooks on using SOFIE:
▶ https://github.com/lmoneta/tmva-tutorial/tree/master/sofie

▶ Tutorials are also available in the tutorial/tmva directory

▶ Link to SOFIE code in current ROOT master in GitHub

▶ Link to PR implementing SOFIE to SYCL code generation

▶ Link to benchmarks in rootbench 

22

https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html
https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/root-project/root/pull/13550
https://github.com/root-project/rootbench/pull/239

Backup

23

Benchmark settings

▶ GPUs
▶ NVIDIA GeForce RTX 4090
▶ Intel Arctic Sound-P

▶ CPU: Intel 16C/32T @5GhZ

24

SYCL Implementations

25

Implementations under 
developments:

▶ Codeplay

▶ Intel OneAPI 
Data Parallel C++ 
(DCP++)

▶ AdaptiveCpp

▶ neoSYCL

▶ triSYCL

SYCL Application Code Structure

26

Benchmark using a CMS Model
▶ SOFIE can parse some complex models: CMS Deep Double model (DDB.onnx)

▶ 3 inputs with 1d Conv + GRU

27

La
rg

er
 =

 B
et

te
r

Ubuntu Intel i9-9900 MaCOS M1 Max0

20
40
60
80

100
120
140
160
180
200
220
240

Pr
oc

es
se

d
Ev

en
ts

/s
ec SOFIE

ONNXRuntime

DDB CMS Model (BS=1)

GNN Support
▶ Follow Graph Nets architecture

● A model is described by
■ number of nodes and edges
■ sender/receiver list of edges
■ number of features (for node, edge and global)

● Updating functions on node, edge and global features
■ MLP (Multi-Layer Perceptron)

■ including activation functions  
and layer normalisation

■ Aggregation functions
■ Mean, Sum,…

28

Benchmark: Dense Model

29

10 Dense
 layers

Benchmark with RDF
▶ Test on a Deep Neural Network (from TMVA_Higgs_Classification.C tutorial)  

5 fully connected layers of 200 units
▶ Run on dataset of 5M events:

▶ Single Thread, but can run also on Multi-Threads

30
DNN Model(5 layers of 200)0

50

100

150

200

250

300

310×

Pr
oc

es
se

d
Ev

en
ts

/s
ec SOFIE

ONNXRuntime
LWTNN

Ubuntu 20.04 Intel 5000MHz

La
rg

er
 =

 B
et

te
r

https://root.cern.ch/doc/master/TMVA__Higgs__Classification_8C.html

