Accelerating Machine Learning Inference on GPUs with SYCL using SOFIE

Lorenzo Moneta, Ioanna Panagou, Sanjiban Sengupta Speaker: V. E. Padulano

ACAT 2024

Machine Learning Inference

- Fast Evaluation of Machine Learning models is more and more relevant
- ML tools like Tensorflow/PyTorch have functionality for inference
 - can run only for their models
 - usage in a C++ environment can be cumbersome (API, dependencies etc.)
- A standard for describing deep learning models:
 - ONNX ("Open Neural Network Exchange")
 - cannot describe all possible deep learning models (e.g. GNN) fully
- ONNXRuntime: an efficient inference engine based on ONNX
 - can work in both C++ and Python
 - supporting both CPU and GPU
 - can be challenging to integrate in the HEP ecosystem
 - control of threads, dependencies, etc..
 - not optimised for single-event evaluation

ONNX

Idea for Inference Code Generation

An inference engine that...

- Input: trained ONNX model file
 - Common standard for ML models
 - Supported by PyTorch natively
 - Converters available for Tensorflow and Keras
- **Output**: C++ code of the inference function
 - Easy integration in other C++ projects
 - Minimal dependency (on BLAS only)
 - Can be compiled on the fly using Cling JIT

SOFIE : System for Optimised Fast Inference code Emit

SOFIE

Outputs

2. C++ header file

Code Generation

C++ code

Parser: from ONNX to SOFIE::RModel class RModel: intermediate model representation using namespace TMVA::Experimental::SOFIE; RModelParser ONNX parser; RModel model = parser.Parse("Model.onnx"); Code Generation: from **RModel** to a **C++ header** and a weight file // generate text code internally model.Generate(); // write output header and data weight file model.OutputGenerated();

Generated code depends only on BLAS (no ROOT)

namespace TMVA SOFIE Model{ struct Session { Session(std::string filename) { std::vector<float> infer(float* input) //- implementation of all operators return output tensor; weight files DAT or ROOT

Using the Generated code: in C++

SOFIE generated code can be easily used in compiled C++ code

Using the Generated code: in Python

Code can be compiled using ROOT Cling and used in C++ interpreter or Python

```
import ROOT
# compile generate SOFIE code using ROOT interpreter
ROOT.gInterpreter.Declare('#include "Model.hxx"')
# create session class
s = ROOT.TMVA_SOFIE_Model.Session('model_weights.dat')
#-- event loop
# evaluate the model , input can be a numpy array
# of type float32
result = s.infer(input)
```

SOFIE Integration with RDataFrame

- SOFIE Inference code provides a Session class with this signature: vector<float> ModelName::Session::infer(float* input);
- **RDataFrame**(RDF) interface requires a functor with this signature: FunctorObj::operator()(T x1, T x2, T x3,....);

Have a generic functor class adapting SOFIE signature to RDF: SofieFunctor<N, Session>

supporting multi-thread evaluation, using the RDF slots

```
ROOT::RDataFrame df("tree", "inputDataFile.root");
auto h1 = df.DefineSlot("DNN_Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),
{"m_jj", "m_jjj", "m_lv", "m_jlv", "m_bb", "m_wbb", "m_wwbb"}).
HistolD("DNN_Value");
h1->Draw();
```

See full Example tutorial code in <u>C++</u> or <u>Python</u>

GPU Extension of SOFIE

Extend SOFIE functionality to produce GPU code using SYCL

// generate SYCL code internally
model.GenerateGPU();
// write output header and data weight file
model.OutputGeneratedGPU();

What is SYCL ?

SYCL is a single-source, high-level, standard C++ programming model
 can target a wide range of heterogeneous platforms (CPUs, GPUs, FPGAs)

C++ to SYCL

GPU Implementation

Performance considerations

- Minimise overhead of data transfers between host and device
 - implement all on GPU and transfer data only at the beginning and at the end of the computation
- Manage buffers efficiently, declaring them at the beginning

Use libraries for GPU Offloading:

- GPU BLAS implementation from Intel oneAPI and portBLAS for other GPUs
- Fuse operators when possible (e.g. a layer op. with activation) in a single kernel

ONNX Supported Operators

Operators implemented in ROOT	CPU	GPU
Perceptron: Gemm	✓	✓
Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu	✓	✓
Convolution (1D, 2D and 3D)	~	✓
Recurrent: RNN, GRU, LSTM	✓	
Pooling: MaxPool, AveragePool, GlobalAverage	✓	✓
Deconvolution (1D,2D,3D)	✓	✓
Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity	✓	✓
Layer Binary operators: Add, Sum, Mul, Div	✓	✓
Reshape, Flatten, Transpose, Squeeze, Unsqueeze, Slice, Concat, Reduce, Gather	✓	✓
BatchNormalization, LayerNormalization	~	✓
Custom operator	✓	

 current CPU support available in ROOT 6.30

 GPU/SYCL is implemented in a <u>ROOT PR</u>

CPU Benchmark for Different Models

Test event performance of SOFIE vs ONNXRuntime

(using batch size = 1)

Better

II

Smaller

Performance on CPU vs GPU

Performance on GPU vs CPU (ResNet)

Using ResNet Model (rather heavier model, > 10 conv. layers with image sizes ~ 200x200)

Varying Batch size

Added SOFIE support GNN models

Initiated with a network developed by LHCb:

- Message Passing GNN built and trained using DeepMind's Graph Nets library
 - model plan to be used in LHCb trigger using full event interpretation (see ACAT2024 contribution)
 - important to have efficient implementation and with minimal dependencies
- Available now in ROOT master
 - support for a dynamic number of nodes/edges

SOFIE GNN Support

Developed C++ classes for representing GNN structure.

- based on SOFIE RModel and the ROperator classes developed for supporting ONNX.
- SOFIE classes provide the functionality to generate C++ inference code
- Python code (based on PyROOT) for initialising SOFIE classes from the Graph Nets models

Graph Nets GNN

GNN Inference

Graph Input Data

- Final model is composed by several blocks chained together
 - SOFIE can generate C++ code for each single GNN block

RModel GNN

- a C++ struct of RTensor's represents the GNN data flowing trough the model
- Users can stack the GNN blocks according to the desired architecture in the inference function for the full model

RModel GNNStack

Benchmark of SOFIE GNN

Test inference performance of a toy architecture from LHCb

• scaling number of nodes and edges

- SOFIE, fast and easy-to-use inference engine for Deep Learning models, is available in ROOT
 - Integrated with other ROOT tools (*RDataFrame*) for ML inference in end-user analysis
 - Support for several ONNX operators and also GNN
 - A prototype implementation using SYCL has been developed
 - Plan to extend to CUDA and/or ALPAKA
 - Could also fit in the context of experiment GPU trigger systems
- Future developments according to user needs and the received feedback
 - Supporting production model from experiments (GNN and transformers)

Example Notebooks and Tutorials

- Example notebooks on using SOFIE:
 - https://github.com/Imoneta/tmva-tutorial/tree/master/sofie
- Tutorials are also available in the <u>tutorial/tmva</u> directory
- Link to SOFIE code in current ROOT master in GitHub
- Link to PR implementing SOFIE to SYCL code generation
- Link to benchmarks in rootbench

Backup

Benchmark settings

GPUs NVIDIA GeForce RTX 4090 Intel Arctic Sound-P CPU: Intel 16C/32T @5GhZ

SYCL Implementations

SYCL Application Code Structure

<pre>#include <cl sycl.hpp=""> // header file namespace sycl = cl::sycl;</cl></pre>	Include SYCL header	
<pre>int main() { // host storage (a = b * 2) std::vector<float> a = {1.0, 2.0, 3.0, 4.0}; std::vector<float> b = {0.0, 0.0, 0.0, 0.0}; auto length = a.size(); sycl::default_selector device_selector; // device selector sycl::queue queue(device_selector); // queue { // begin scope</float></float></pre>	Setup Host Storage Initialize Device Selector Initialize Device Queue	
<pre>// device storage sycl::buffer<float, 1=""> a_buf(a.data(), sycl::range<1>(length); sycl::buffer<float, 1=""> b buf(b.data(), sycl::range<1>(length);</float,></float,></pre>	Setup Device Storage	
<pre>// kernel execution queue.submit([&] (sycl::handler& cgh) { auto a_acc = a_buf.get_access<sycl::access::mode::discard_write>(cgh); auto b_acc = b_buf.get_access<sycl::access::mode::read>(cgh); cgh.parallel_for<class op="">(sycl::range<1>(length), [=] (sycl::id<1> id) { a_acc[id] = b_acc[id] * 2; }); } // end scope return (0);</class></sycl::access::mode::read></sycl::access::mode::discard_write></pre>	Execute Kernel	
}		

Benchmark using a CMS Model

SOFIE can parse some complex models: CMS Deep Double model (DDB.onnx)

3 inputs with 1d Conv + GRU

GNN Support

Follow Graph Nets architecture

- A model is described by
 - number of nodes and edges
 - sender/receiver list of edges

- Updating functions on node, edge and global features
 - MLP (Multi-Layer Perceptron)
 - including activation functions and layer normalisation
 - Aggregation functions
 - Mean, Sum,...

Benchmark: Dense Model

Benchmark with RDF

- Test on a Deep Neural Network (from <u>TMVA_Higgs_Classification.C</u> tutorial) 5 fully connected layers of 200 units
 - Run on dataset of 5M events:
 - Single Thread, but can run also on Multi-Threads

