
Small, well-scoped packages:

 • can be installed à la carte;

 • promote (require) clear interfaces;

 • allow for more experimentation:

 if an idea doesn't work out, it

 doesn't have to be maintained;

 • more visibility to new developers.

This project is supported by the National Science Foundation (NSF) cooperative agreements OAC-1836650 and PHY-2323298 (IRIS-HEP), grant OAC-1450377 (DIANA/HEP), PHY-2121686 (US-CMS LHC Ops), and OAC-2103945
(Awkward Array). Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Awkward Family
extending functionality through

interrelated Python packages

Jim Pivarski, Princeton University

In the 5+ years since their inception, Uproot and

Awkward Array have become a foundation layer for

Pythonic HEP analysis, both as direct user interfaces

and as dependencies for physicist-facing frameworks.

Although this means that the software is achieving its

mission, it also puts the need for stability in conflict

with new, experimental developments. Boundaries

must be drawn between the code that needs to stay

robust and the code that implements new ideas.

To the extent that is possible, new developments are

now being persued in new packages, rather than

extensions of the existing packages.

Introduction Why? Why not?
More confusing to users:

 • which ones are still being maintained?

 • how can they be used together?

 • where to ask questions?

Boost::Histogram

boost-histogram

hist

mplhep

histoprint

thin wrapper

fully featured

plotting in
Matplotlib

plotting in
terminal

Awkward Array backend

formulate

“awkward-pandas”

DataAPIs

ragged restricts Awkward

Array data types to only

lists of lists of numbers,

but in a way that conforms

to DataAPI specifications,

which might allow them

to be used in xarray.

uproot-browser is a text-

user interface that lets

you navigate ROOT files,

view and save plots, and

 has a command-line

 interface for

 scripting.

 formulate parses

 and converts between

ROOT TTree::Draw syntax,

NumExpr, and array slices.

It will be used as a plug-in

for Uproot to compute and

 cut with these languages.

parser

 Vector transforms coordinates

 and computes useful functions for

 2D, 3D, and 4D (Lorentz) vectors objects,

 NumPy arrays of vectors, and Awkward

Arrays of vectors. As a dependent library,

Vector tests Awkward's “behavior”

mechanism, which specifies how

 functionality is added to

 deeply nested

 data.

 awkward-pandas wraps Awkward Arrays as Pandas Series

 and provides Awkward functionality through an accessor.

But since Awkward Arrays are zero-copy compatible with

Apache Arrow and Pandas is moving toward Arrow, this

 library might not be needed in the future. We're also

 exploring interoperability with Polars and

 RAPIDS CuDF, which are already

 backed by Arrow.

dask-awkward adds a new

high-level collection to Dask

so Awkward Array computations

can be delayed and distributed.

 Coffea, a physics toolset

 developed at Fermilab,

has fully integrated dask-awkward and many

 new analyses in CMS are now distributed

 using Dask. See Lindsey Gray's 11am

 plenary on Thursday

 for more.

AwkwardArray.jl is an implementation of Awkward

Array in Julia, with zero-copy interoperability

between the two languages. It lowers the barrier to

mixing Python and Julia, allowing Uproot to be

replaced with (faster) UnROOT.jl. See Ianna

Osborne's 2:30pm Track 1 talk on Wednesday.

Kaitai Struct describes data formats in YAML

and generates deserializers in many languages.

Manasvi Goyal added a backend that generates

 Awkward Arrays in C++ and presents them

 in Python, with more automation

 than any other backend. See

 her poster on Monday.

hepconvert is a library and command-

line program for high-level conversions

 between file formats of interest to HEP,

 accumulating statistics, and copying files

 with changes, such as adding and

 dropping columns. See Zoë

 Bilodeau's poster

 on Thursday.

 Awkward Array is a library for manipulating lists, nested records, missing data and

mixed types with NumPy-like idioms. It has built-in support for Numba acceleration,

 JAX autodiff, Apache Arrow and ROOT RDataFrame interoperability, and GPUs.

Uproot is a pure Python implementation of ROOT I/O, reading and writing TTrees and

RNTuples as arrays: NumPy, Awkward, and Pandas. Uproot gets histograms through

 hist, remote data through fsspec, and uses dask-awkward and awkward-pandas.

awkward0

0.15.0

awkward

0.14.0 1.0.0

awkward1

0.4.5 1.0.0

(pass-through to awkward>=1.0.0)

uproot3

3.14.1

uproot

3.13.1 4.0.0

uproot4

0.1.2 4.0.0

(pass-through to uproot>=4.0.0)

pip install X/import X transition line

coffea

0.7.00.6.x

old awkward/uproot can be used with new awkward/uproot,

uproot3-methods

0.10.0

uproot-methods

0.9.2
(no new equivalent: use Vector)

but only if both version/names are to the left or right of the transition line

0.6.51

How not to roll out major interface changes:

Do not change package names. At least, do not reuse old names after

a package with a different interface has used that name.

To give users a chance to gradually adapt

to a major interface change, we named

Awkward 0.x as “awkward0” and 1.x as

“awkward1” during a transition period, so

they could both be imported in the same

session. However, third-party libraries

 were dependencies of name/version

 combinations that became invalid when

 Awkward 1.x became “awkward”.

 Awkward 1.x → 2.x used semantic

versioning in the normal

 way and was much

smoother.

A single package can act as

an interface to a whole ecosystem.

Histogram packages are easy to create,

but hard to make comprehensive enough

to become a standard: at one point, PyPI

hosted 20 HEP-related histogram packages.

Several histogram packages converged in the

 Scikit-HEP ecosystem: boost-histogram can fill quickly

 but has no plotting capabilities; mplhep only plots.

 Instead of consolidating these features into one

 package, we defined common protocols for

 interoperability and wrapped all functionality

 into a package that

 can be imported

 and installed

 as “hist”.

This is still an open issue. Help with

HEP software is decentralized across

Gitter, GitHub, GitLab, Mattermost,

Slack, RootTalk, Launchpad… Ask me

about my “hep-help” project to try

to link them

together.

Maintaining interoperability

Coherence of a single package can be maintained with git

and continuous testing, but between packages, wide ranges

of versions must work together.

Where to ask questions?

Too many packages?

Strict public/private boundaries are essential, as is common

ground testing, such as CoffeaTeam/integration-test and

Scientific Python Nightly Wheels (SPEC-4).

Define a deprecation policy and post it

in a public place. Awkward Array's policy

is on its roadmap/wiki:

 • public interface can only change on

 minor version boundaries (2nd digit);

 • warnings must be raised in the code

 two minor versions in advance;

 • minor versions must be at least (but

 close to) two months apart.

 Deprecation warnings are

 only possible if users can

 toggle between behaviors

 with different names!

When the interface must change

