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ABSTRACT
We present a framework based on Catch2 to evalu-
ate performance of OpenMP’s target offload model
via micro-benchmarks. The compilers supporting
OpenMP’s target offload model for heterogeneous ar-
chitectures are currently undergoing rapid develop-
ment. These developments influence performance of
various physics applications in different ways. This
framework can be employed to track the impact of
compiler upgrades and compare their performance
with the native programming models. We use the
framework to benchmark performance of a few com-
monly used operations on leadership class supercom-
puters such as Perlmutter at National Energy Research
Scientific Computing (NERSC) Center and Frontier at
Oak Ridge Leadership Computing Facility (OLCF).
Such a framework will be useful for compiler devel-
opers to gain insights into the overall impact of many
small changes, as well as for users to decide which
compilers and versions are expected to yield best per-
formance for their applications.
Keywords: performance portability, OpenMP target
offload, CUDA, HIP, micro-benchmarks, Catch2

OPENMP TARGET OFFLOAD
• Compiler directive-based programming model

for shared memory parallelization
• OpenMP 4.0 and above extend support for par-

allel execution on heterogeneous architectures via
the target offload model

• An important candidate for portable program-
ming model on heterogeneous architectures

• Architecture agnostic compiler directives can of-
fload to multiple GPU, FPGAs, or use CPU
threads

• Easy to use, does not require major changes to
C++ code, interoperable with other programming
models, has good support from build systems

• Performance is heavily dependent on compilers
and appropriate flags

– LLVM Clang and GCC are community-
developed

– NVIDIA’s nvc++, AMD’s amd-clang, AOMP,
AFAR, and Intel’s icpx are vendor-developed

• We needed a framework to track improvements
in the compilers and compare their performance
with native programming models.

CUDA VS OPENMP APIS
cudaMalloc (**devicePointer, size)
devicePointer = omp_target_alloc (size, deviceID)

cudaMemcpy (dest, src, count, cudaMemcpyHostToDevice )
omp_target_memcpy (dest, src, count, dest_offset, src_offset,
dst_dev_id, src_dev_id )

cudaFree (devicePointer)
omp_target_free (devicePointer, deviceID)

#pragma omp target is_device_ptr ( devicePointer ) map ( )
#pragma omp teams distribute parallel for num_threads
(BLOCK_SIZE)
for ( . . . ; . . . ; . . . ) {
...
#pragma omp atomic
...
}

BENCHMARKING WITH CATCH2
• Identifying and evaluating performance of mi-

crobenchmarks has the potential to affect many
applications at once

• Catch2 is primarily a unit-testing framework for
C++ applications which has incorporated bench-
marking to its features

BENCHMARK ("initialize array") {
return array_init (device_array_ptr, array_size,
block_size, num_blocks);
} ;

allocate_x_y_z_host_device ();
BENCHMARK_ADVANCED ("zaxpy")
(Catch::Benchmark::Chronometer meter ) {
initialize_x_y_z_copy_host_to_device ();
meter.measure ( [x, y, z, a, array_size,
block_size, num_blocks]
{ return zaxpy (x, y, z, a, array_size, block_size,
num_blocks); } ) ;
copy_z_device_to_host ();
};

• Macros calculate the number of runs in each sam-
ple depending on their execution time.

• The final statistics is calculated with an option for
statistical bootstrapping.

• Several useful command line options for samples,
resamples, confidence interval, and warmup-time
to quantify statistics.

z = a× x + y
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Zaxpy with 256 threads per block • For array size 224 performance
of zaxpy kernel has deteriorated
from Clang-15 to Clang-16.

• Slowdown of Clang with respect
to HIP is consistent for small and
large arrays, whereas with re-
spect to CUDA is milder for large
array.

ATOMIC UPDATE

 0

 10

 20

 30

 40

 50

 60

 70

 80

V100
double

V100
float

V100
int

A6000
double

A6000
float

A6000
int

V100
double

V100
float

V100
int

A6000
double

A6000
float

A6000
int

Clang-15.0.0 CUDA-11.7

T
im
e 
(µ
s)

128 256 512 1024

Atomic Update of 212 length array

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

V100
double

V100
float

V100
int

A6000
double

A6000
float

A6000
int

V100
double

V100
float

V100
int

A6000
double

A6000
float

A6000
int

Clang-15.0.0 CUDA-11.7

T
im
e 
(µ
s)

Atomic Update of 224 length array

• CUDA is much faster than Clang for smaller array size,
however, it becomes comparable for a larger problem.

• The above trend is consistent across different Nvidia GPUs.
• Integer data type is optimized better when array size is in-

creased.

ATOMIC CAPTURE
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• CUDA is much faster than Clang for smaller array as well
as the larger problem, shows little variation with data types

• With the exception of small array on A6000, integer data
types are the slowest for Clang.

IMPACT OF COMPILER FLAGS
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cuda-mode
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assume-no-thread-state
assume-no-nested-parallelism

all

Zaxpy, 218, V100, Clang-17, 256 threads per block
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FUTURE WORK
• Extend the list of microbenchmarks to more atomic and

other commonly used operations
• Compare performance of other vendor and community de-

veloped compilers
• Managed memory
• A SYCL port of benchmarks to compare performance on the

Intel GPUs.
• Compare overheads with other prortable programming

models like Kokkos/RAJA.
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