
Porting and optimizing the performance of LArTPC detector simulations with C++ standard
parallelism

Tianle Wang1, Mohammad Atif1, Zhihua Dong1, Charles Leggett2, Meifeng Lin1,
1Brookhaven National Laboratory, Upton, NY 11973, USA

2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA https://www.anl.gov/hep-cce

Introduction

There is a significant expansion in the variety of hardware architectures these

years, including different GPUs and other specialized computing accelerators.

For better performance portability, various programming models are

developed across those computing systems, including Kokkos, SYCL,

OpenMP, and others. Among these programming models, the C++ standard

parallelism (std::par) has gained considerable attention within the

community. Its inclusion as a part of the C++ standard library underscores

its significance and potential impact, and it is also supported on AMD GPU

recently.

As part of the High Energy Physics Center for Computational Excellence

(HEP-CCE) project, we investigate if and how std::par may be suitable for

experimental HEP workflows with some representative use cases. One of

such use cases is the Liquid Argon Time Projection Chamber (LArTPC)

simulation which is essential for LArTPC detector design, validation and

data analysis. Following our earlier work of using Kokkos, OpenMP, and

SYCL to port LArTPC simulations module, we are going to present the

following topics: 1). How std::par is currently supported on different

architectures and compiler, and comparison with other programming models;

2). Lesson learned from optimizing kernels with std::par; 3). Advantages and

disadvantages of using std::par in porting LArTPC simulation and other HEP

programs.

C++ standard parallelism (std::par)

std::execution::parallel (std::par) was first introduced in C++17, and it is

part of the C++ standard, which means it will have good backward

compatibility.

Its semantics are more similar to Kokkos/SYCL, which uses lambda

expression as the functor, than directive-based programming models like

OpenMP.

It introduces execution policies for STL algorithms that allow parallel

(multicore, GPU, SIMD) optimizations, which guarantees portability.

C++ does not provide explicit memory movement functionalities, so its

memory model relies on the vendor’s unified memory support.

In 2020, NVIDIA introduced a compiler (nvc++), which enabled the

execution of parallel execution policies on NVIDIA GPUs. It automatically

migrates the dynamic memory, e.g., memory allocated by malloc and

std::vector via page fault.

Currently, it supports more compilers/architecture combinations, including

oneAPI:dpl on Intel GPU and clang on AMD GPU.

With the development of the C++ standards, it will support more features

in other programming models, e.g., mdspan (multi-dimension array)

It has a higher abstraction level than other programming models.

OpenMP vs std::par Usage

//With OpenMP we need to map data to device explicitly

#pragma omp target enter data map(to: data[0:N])

//With std::par, we don’t need to map data explicitly

//OpenMP uses directive to modify for loop

#pragma omp teams distribute parallel for ...

for(..., ..., ...)

//std::par use lambda functor combined with std::algorithm

//like for each, transform, reduce, ...

std::for each(std::execution::par, data, data+N,

[](T& ele) {...});
//With OpenMP we need to map data from device explicitly

#pragma omp target enter data map(from: data[0:N])

//With std::par, we don’t need to map data explicitly

Implementation detail

We use the idea of CountingIterator to allow for

index-based access to arrays.
Three of the functions in LArTPC simulation are not
supported: RNG, FFT, and atomic add for floating
numbers.
FFT: We wrap over FFTW on CPU and cufft/rocfft on GPU

RNG: We implement our own header-only RNG library that works on

both CPU and NVIDIA/AMD GPU

Atomic operations: We properly convert floating point numbers to

integer type and invoke std :: atomic<int> on CPU (which will cause

performance loss), and wrap cuda/hip atomic functions

Some of the algorithms need to be modified as they are not
supported by std::par
Two layers of parallelism → loop collapsing.

Parallel reduction inside a parallel loop → serialize either one of the

parallelism layers based on actual performance.

Different from other programming models, std::par does

not have many hyper-parameters to be fine-tuned (e.g.,

number of blocks/threads)

When compiling with nvc++ and running on NVIDIA GPU,

latest compiler might not work correctly. We find that

nvc++ with version > 23.1 fails to compile our project.

Also, we need to rebuild the library and its dependency

using nvc++, otherwise we will have runtime errors.

Acknowledgement

This work is supported by US Department of Energy, Office of Science, Office of High

Energy Physics under the High Energy Physics Center for Computational Excellence

(HEP-CCE), a collaboration between Argonne National Laboratory, Brookhaven

National Laboratory, Fermilab and Lawrence Berkeley National Laboratory.

Performance comparison

Figure 1: Running time with different compiler using OpenMP / std::par on Permultter NVIDIA-A100 GPU and multicore CPU.
Currently we have not solved the compatible issue on AMD GPU.

Initial Page Migration (Prefetch)

Figure 2: The kernel/data movement trace of a simple axpy-like kernel, where
data are initialized on GPU. Top: Use raw pointer with malloc to allocate
memory. Bottom: Use std::vector to allocate memory.

For data that are initialized on GPU, one
optimization is to create the object on
GPU instead of CPU so that we don’t
need to perform data movement. When a
std::vector object is created, it will auto-
matically create the data on CPU, which
later introduces unnecessary page migra-
tion. Because of that, we recommend us-
ing raw pointers with malloc for data that
are initialized on GPU.

AMD GPU: first look

Here, we test the performance of the rocm-stdpar implementation on
AMD GPU by comparing it with OpenMP, using three representative
kernels: an axpy-like kernel (A), a reduction kernel (B), and a
computationally costly kernel (C). These three kernels all have different
performance bottlenecks.
For these experiments, we set HSA XNACK=1 and compile without
−−hipstdpar−interpose−alloc flag.

Future plan

Test and Port to Intel GPU
Experiment on the effect of
XNACK on AMD GPU
Experiment with other
implementation of std::par

Reference

1
https://github.com/GKNB/test-
benchmark-OpenMP-RNG

2
https://github.com/GKNB/Wire-
cell-gen-stdpar

3 Lin, Meifeng, et al. ”Portable
Programming Model Exploration
for LArTPC Simulation in a
Heterogeneous Computing
Environment: OpenMP vs.
SYCL.” arXiv preprint
arXiv:2304.01841 (2023).

Work supported by US Department of Energy, Office of Science, Office of High Energy Physics under the High Energy
Physics Center for Computational Excellence (HEP-CCE), a collaboration between Argonne National Laboratory, Brookhaven
National Laboratory, Fermilab and Lawrence Berkeley National Laboratory.

CHEP-2023,
5/8/2023-5/12/2023


