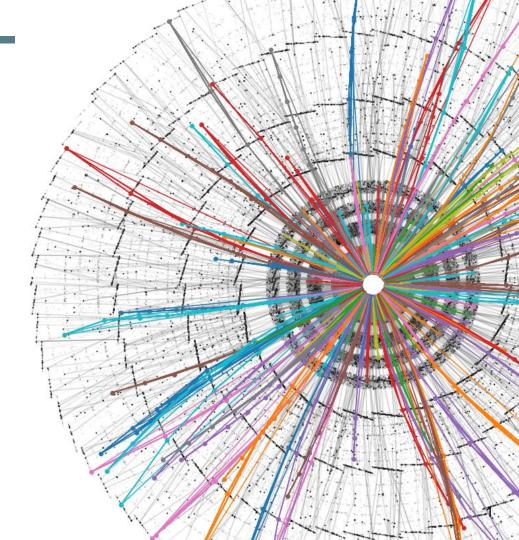
Improving Computational Performance of a GNN Track Reconstruction Pipeline for ATLAS

Daniel Murnane

On behalf of the ATLAS Collaboration

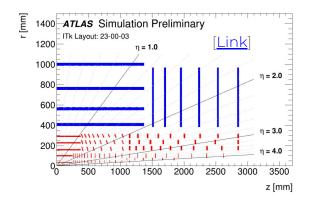


Outline

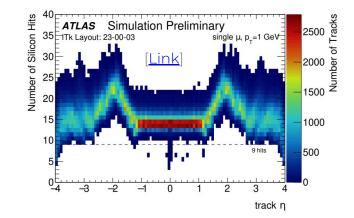
- Description of current pipeline
- Physics performance
- Acorn training, inference and evaluation framework
- Computational constraints for offline and online tracking
- Optimization research directions

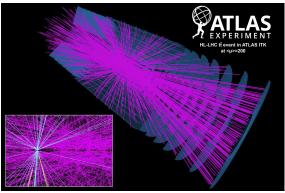
Physics Performance of GNN4ITk Pipeline

Tracking in ATLAS HL-LHC Inner Tracker (ITk)

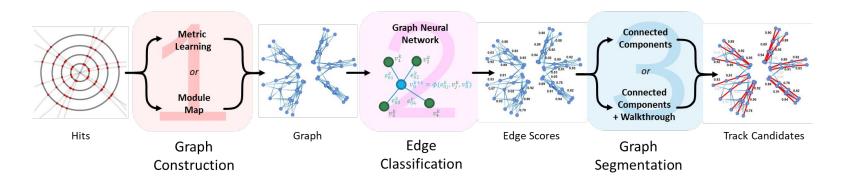


- Track finding requires associating each hit to a track candidate
- Number of hits per $pp \rightarrow t\bar{t}$ event: 311,000 +/- 35,000
- Number of particles per $pp \rightarrow t\bar{t}$ event: 16,000 +/- 1,700
- Innermost pixel layer 25x100 μm^2 , all other pixel layers 50x50 μm^2
- · Strip layers are at millimeter resolutions
- We focus on Athena simulation in the following slides

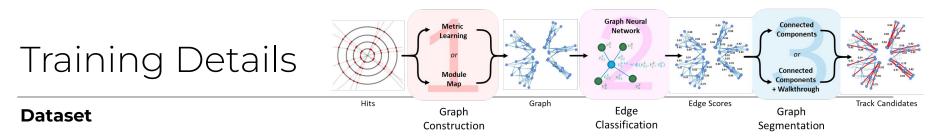




GNN4ITk Pipeline



- Pipeline receives clusters = collections of energy deposits on silicon. These are associated with 3D spacepoints, to be used as nodes for stage 1 onwards
- Out of stage 3 we obtain a set of track candidates, each is an unordered set of spacepoints
- For processing in Athena track fitting chain, we associate these back to the original clusters, and order in increasing distance from beamspot origin



Run 4 ATLAS simulation, ttbar <µ>=200 pileup, ITk geometry

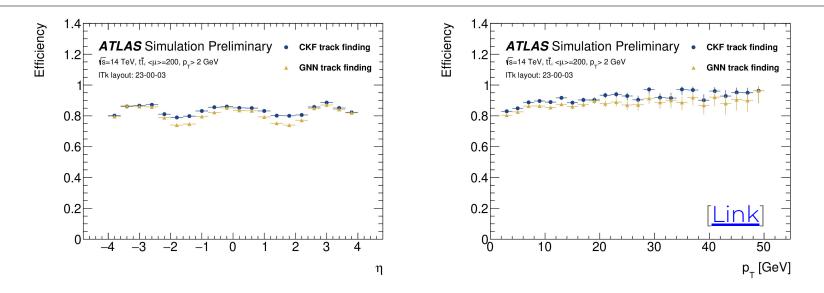
Truth

- Pairwise connections between *sequential* hits in *target tracks* treated as true
- A target track is primary, non-electron, p_T >1GeV, and has at least 3 hits
- All other connections between all other tracks (or noise) considered fake

Training Strategies

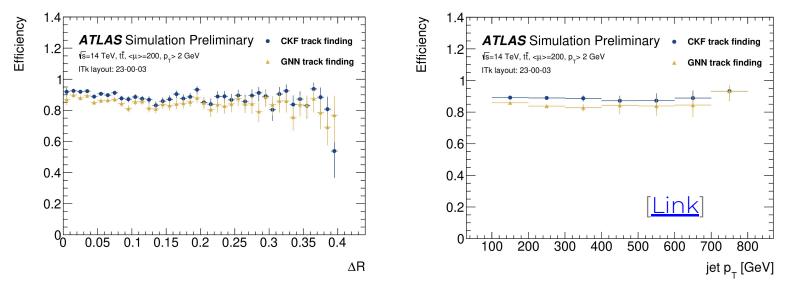
- Data-driven adjacency matrix and geometric cuts for module map
- Contrastive hinge loss for metric learning
- Binary cross entropy for edge classification (GNN and edge filter)

Track Reconstruction Performance



- Tracking efficiency compared with current combinatorial kalman filter (CKF) technique
- Behaviour across $\mathbf{\eta}$ and \mathbf{p}_{τ} similar to CKF good sanity check!

Track Reconstruction Performance



Again, similar characteristics across ΔR and jet p_{T}

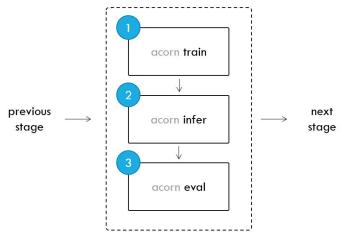
ACORN: A Charged Object Reconstruction Network

- Framework design & goals [<u>Link</u>]
 - A modular framework for training and R&D of ML-based tracking
 - Runs on pytorch lightning and pytorch geometric
 - Each stage self-contained, run either separately or (newly built) multi-stage inference
 - Approximately 12 active developers across 7 institutes
- Integrations

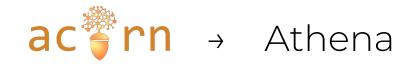
•

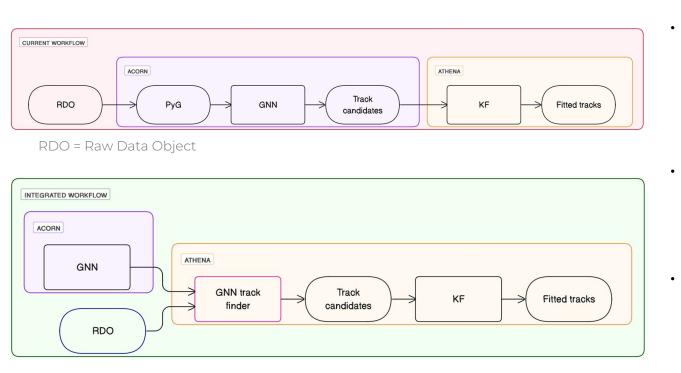
٠

- ATLAS ITk
- ACTS OpenData Detector
 - <u>TrackML</u>



current stage





Previously, Acorn used to build tracks, which were passed back into Athena for fitting Now, models trained in Acorn, translated to Onnx and TorchScript Loaded into Athena Component (c++) as part of tracking chain

11

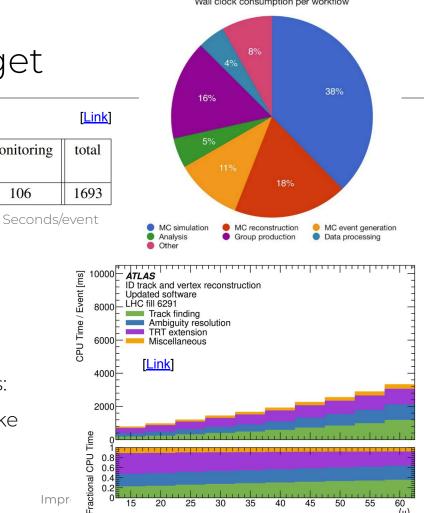
Tracking Computational Requirements

Wall clock consumption per workflow

ATLAS Computing Budget

Detector	$\langle \mu \rangle$	inner	muon spectrometer	combined	monitoring	total
		tracking	and calorimeter	reconstruction		
Run 2	90	1137	149	301	106	1693

- (Top right) Average CPU usage in 2018: • Reconstruction significant piece
- (Above) Reconstruction timings for run 2 ٠ (seconds): Tracking takes majority of time
- (Right) Run 3 track reconstruction timings: • Track finding and ambiguity resolution take ~2s for $<\mu>=60$



Impr

HL-LHC Offline & Online Track Reconstruction Needs

	LHC Run 3	HL-LHC
L0 trigger accept	100 kHz	1 MHz
Event Filter accept	1 kHz	10 kHz
Event size	1.5 MB	4.6 MB

- Event filter (high level trigger) contains tracking
- Regional tracking @ 1MHz
- Full event tracking @ 150kHz
- Current CPU proposed algorithm is optimized Fast Tracking
- 23.2 s/event single-core CPU, small drop in track efficiency: 1-2% on average, 5% for pT in [1,1.5]GeV

()	Tracking	Release	Byte Stream	Cluster	Space	Si Track	Ambiguity	Total	
$\langle \mu \rangle$	$\langle \mu \rangle$ Tracking		Decoding	Finding	Points	Finding	Resolution	ITk	
140	default	21.9	2.2	6.4	3.5	31.6	43.4	87.1	
140	fast	21.9		6.1	1.0	13.4	-	22.7	
200	default	21.0	21.9	2.7	8.3	4.9	66.1	64.1	146.6
200	fast	21.9	3.2	8.1	1.2	23.2	-	35.7	

Fast tracking vs Default tracking timing (s) [Link]

$\langle \mu \rangle$	Tracking	Byte Stream	Cluster	Space	Si Track	Total
		Decoding	Finding	Points	Finding	ITk
140	full-scan	2.2	6.1	1.0	13.4	22.7
140	regional	0.33	0.90	0.15	1.11	2.49
200	full-scan	3.2	8.1	1.2	23.2	35.7
200	regional	0.48	1.23	0.18	1.92	3.81

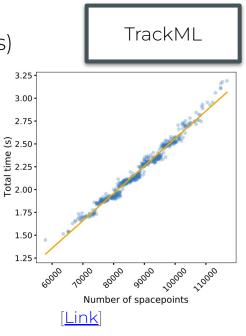
Fast tracking timing (s) for regional vs full-scan [Link]

HL-LHC Offline & Online Track Reconstruction Needs

TrackML

- Goal is to use GNN4ITk pipeline to perform offline tracking in <1s
- Target regional and full event online tracking in 10-100ms
- Starting with right-hand column below (TrackML ~90k hits)
- Optimizing for ITk (~300k hits)
- Need improvements in all stages

	Baseline	Faiss	cuGraph	AMP	FRNN
Data Loading	0.0022 ± 0.0003	0.0021 ± 0.0003	0.0023 ± 0.0003	0.0022 ± 0.0003	0.0022 ± 0.0003
Embedding	0.02 ± 0.003	0.02 ± 0.003	0.02 ± 0.003	0.0067 ± 0.0007	0.0067 ± 0.0007
Build Edges	12 ± 2.64	0.54 ± 0.07	0.53 ± 0.07	0.53 ± 0.07	0.04 ± 0.01
Filtering	0.7 ± 0.15	0.7 ± 0.15	0.7 ± 0.15	0.37 ± 0.08	0.37 ± 0.08
GNN	0.17 ± 0.03	0.17 ± 0.03	0.17 ± 0.03	0.17 ± 0.03	0.17 ± 0.03
Labeling	2.2 ± 0.3	2.1 ± 0.3	0.11 ± 0.01	0.09 ± 0.008	0.09 ± 0.008
Total time	$15 \pm 3.$	3.6 ± 0.6	1.6 ± 0.3	1.2 ± 0.2	0.7 ± 0.1



TrackML Inference time - Seconds/event [Link]

Computational Performance of a GNN Track Reconstruction Pipeline for ATLAS - ACAT 2024

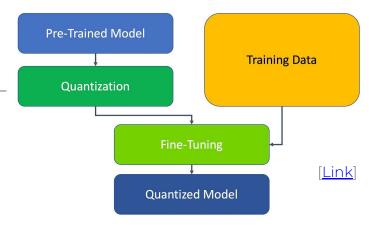
Graph Construction Optimizations

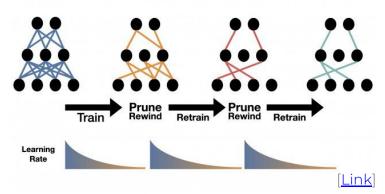
Work by Sebastian Dittmeyer, University of Heidelberg

Quantization and Pruning

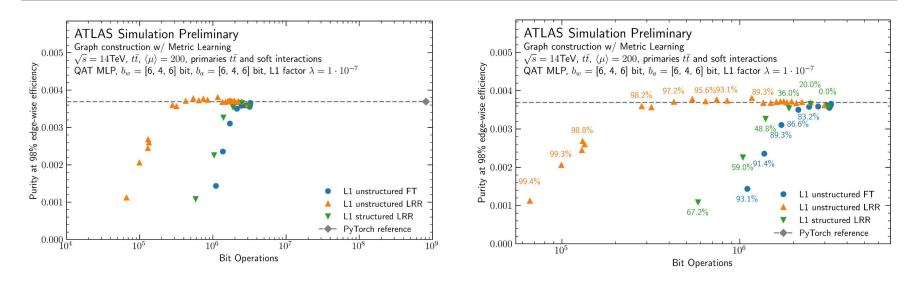
Optimizations for FPGA and GPU studied on embedding (metric learning) stage

- 1. Quantization Aware Training
- Fine-tune quantized model with differentiable notion of quantization
- FPGA can use arbitrary quantization
- GPU can exploit 8-bit quantization
- 2. Iterative (Learning Rate Rewind) Pruning
- During training, iteratively prune model
- After each iteration, restart learning rate





QAT & Iterative Pruning Results



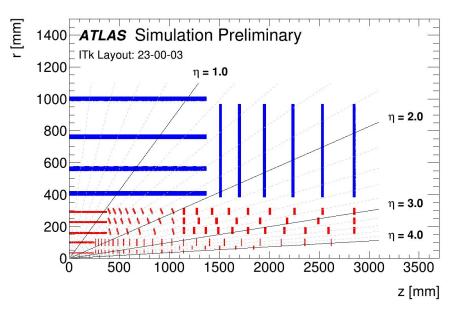
 Can prune model to 1/56 the size and maintain purity at fixed efficiency, using learning rate rewind training (LRR)

Graph Neural Network Optimizations

Work by Jared Burleson, UIUC

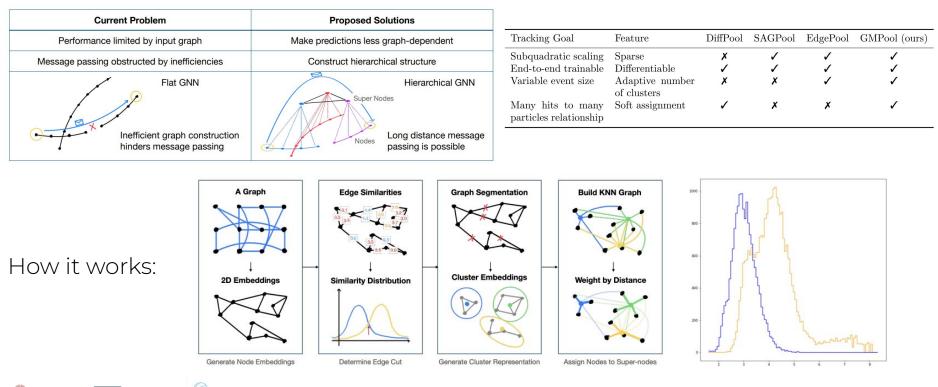
Regional Tracking

- To handle 150kHz-1MHz EF trigger rate, can parallelize across O(100) regions in event, or reconstruct only specific regions
- For highest flexibility, would like to train one model and infer on various topologies
- Initial tests performed very poorly, due to
 batch normalization in model
- Reimplementing with layer normalization, recover both original performance, and equal performance in regional track reconstruction



Graph Segmentation Optimizations

Hierarchical Graph Neural Network: Overview



Hierarchical Graph Neural Network: Results

- The highest physics performance comes from Bipartite Classifier (BC) HGNN with O(1) second inference
- Fastest inference still from connected components
- Latest ITk HGNN model combines both for high efficiency / high throughput
- We see robustness of
 HGNN to edge
 construction inefficiencies
 in earlier stages of pipeline

Models	E-GNN	E-HGNN	BC-HGNN	EC-GNN	Truth-CC
Efficiency Fake Rate Time (sec.)	$94.61\%\ 47.31\%\ 2.17$	$95.60\%\ 47.45\%\ 2.64$	97.86% 36.71% 1.07	96.35% 55.58 % 0.22	97.75% 57.67% 0.07

[<u>Link</u>] to work

TrackML

Percent Edge Removed	0%	10%	20%	30%	40%	50%
BC Efficiency BC Fake Rate Truth-CC Efficiency Truth-CC Fake Rate	$98.55\% \\ 1.23\% \\ 98.72\% \\ 5.87\%$	$\begin{array}{c} 98.39\% \\ 1.55\% \\ 96.21\% \\ 15.53\% \end{array}$	$97.68\% \\ 2.13\% \\ 92.31\% \\ 24.40\%$		77.26%	$\begin{array}{c} 92.79\% \\ 7.31\% \\ 64.81\% \\ 53.12\% \end{array}$

Improving Computational Performance of a GNN Track Reconstruction Pipeline for ATLAS - ACAT 2024

Summary

- GNN4ITk pipeline:
 - Stable and converged
 - Available in open-source via the ac^{*}rn framework
 - Out-of-the-box (i.e. not yet properly tuned) gives physics performance approaching that of Athena CKF algorithm
- HGNN, quantization, pruning and regional tracking all promising directions that show speed-ups with little/no drop in physics performance
- Also building optimized CPU & CUDA module map algorithm, and faster lightweight GNN for pruning graph

