
Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Pinpoint resource allocation for GPU batch applications

Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Ⓒ Andrew Issac

1

Tim Voigtländer, Manuel Giffels, Günter Quast, Matthias Schnepf, Roger Wolf
tim.voigtlaender@kit.edu

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Big GPUs and small applications

Modern HEP workflows often require GPU resources

● The range of how much they require is vast
● Many of them will not fully occupy a datacenter GPU on their own

➔ Hardware has to be shared to reach maximum utilization

Complex topic for batch systems with GPU resources

● Ideally, one GPU could be shared by multiple users
But...

● No guarantee that resource requirements match resource requests
● Little control over quality of executing software
● Shared resources might influence each other

➔ Jobs have to be as isolated as possible

2

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

The TOpAS cluster near the T1 GridKa

● KIT provides GPU resources to CMS, ATLAS and Belle II opportunistically
● There is a mix of V100 and A100 GPUs available
● One full node was used for the tests

○ 8 A100 GPUs and 255 CPU threads

Medium scale machine learning as benchmark
● Training of an event classifier

○ Example from a real HEP workflow
● Up to 12 can fit in GPU memory at once
● Only actual training performance is considered
● Same workload as in the 2022 contribution [1]

Exact specifications and setup in backup

What are we working with?

3

[1] https://indico.cern.ch/event/1106990/contributions/4991345/

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Bad performance with concurrent processes

4

● Runtime increases close to linearly
with the number of processes

● GPU occupation increases sharply
when shared by processes

Most GPUs handle concurrent GPU calls
sequentially via time slicing

[https://docs.nvidia.com/deploy/mps/topics/media/image3.png]

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Multi instance GPU (MIG)

Device setup to split one large GPU into pieces

● Up to seven pieces per GPU

● Each piece acts as its own GPU

● 1/8th of the GPU is reserved for overhead

MIG MPS

5

Multi-process service (MPS)

Service to optimize concurrent contexts

● Summarizes multiple contexts into one

● Optimized sharing

● It’s still one GPU

NVIDIA MIG sketch NVIDIA MPS sketch

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

MIG MPS

6

1 GPU

GPU job
GPU job

GPU job

GPU job
GPU job

GPU job

GPU job1/8th
GPU job

1/8th
GPU job

1/8th
GPU job

1/8th
GPU job

1/8th
GPU job

1/8th
GPU job

1/8th
GPU job

1 GPU

One process for
each piece

Split GPU
via MIG

1 GPU

GPU job
GPU job

GPU job

GPU job
GPU job

GPU job

GPU job

MPS server

Merge processes
via MPS

All processes
merged into one

Only one process per device

Naive approach

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Better performance with MPS

Runtime stays nearly constant, even
with concurrent processes

● Better utilization of GPU capacity

● Only limited by device memory

MPS can have a great impact on the
overall throughput

● GPU occupation in line with
expected performance

➔ Reported GPU occupation without
MPS can be misleading

MPS is beneficial in most cases where
a GPU is shared between processes

7

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Performance comparison

All variants can be used with a batch system

● Small scale tasks occupying a whole GPU is
inefficient

● Sharing the GPU improves throughput
significantly

● Splitting the GPU with MIG has even higher
throughput

● Depending on the task, MPS can be even
faster than MIG due to limit of 7 pieces

MIG and MPS generally show best throughput

● Exact performance is workload dependent

8

Throughput of jobs managed by HTC batch system

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Energy efficiency comparison

● Power usage of full machine measured
over runtime of benchmark

Throughput is related to energy efficiency

● Slow setups also waste energy

● A GPU with only one small task can
have worse energy efficiency than CPU

● Sharing the GPU allows for higher
efficiency

● MIG and MPS show best efficiency
○ Around four times better than CPU

Maximum energy efficiency can only be
reached by relying on MPS or MIG

9

GPU idle

Energy efficiency of various hardware setups

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

MPS provides additional options to isolate GPU-processes compared to simple sharing
● Only fatal GPU failure will influence concurrent processes
● A hard limit for the amount of assignable GPU memory can be set

○ Prevents common issue of one process taking more memory than intended

There is no guarantee that users will apply these options on their own
● Some limitations can be set by the batch system itself

○ No perfect way to set a limit on the whole job

Perfect isolation is not possible, even with MPS, but the risks can be reduced

With limit set by MPS

A bad process will be stopped by the set limit

Safe with sensible limits

Without limit set by MPS

A bad process can kill everything on GPU

Not safe enough for GPU sharing

Job isolation

10

P P P PP P P P

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Comparison of setup options

11

Metric Exclusive GPU usage MIG MPS

Availability Default use for most GPUs Available for selected Nvidia
Ampere GPUs and newer

Available for Nvidia Volta
GPUs and newer

Concurrency Only one process allowed Up to seven processes per
GPU with prior configuration No hard limit

Flexibility Exactly one slot Reconfiguration is difficult
during active work

No predefined slots or limits
Custom limits can be set

Isolation Perfectly isolated Great isolation between
pieces

Not fully isolated
Most issues handled on a

per-process basis

Monitoring All monitoring can be
performed on a per-job basis

Utilization and memory can
be monitored separately

Only total GPU metrics can
be monitored

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Summary and outlook

An HTCondor setup using MPS to share GPUs was successfully tested

● All requirements of MPS proved to be feasible in a batch environment

● Performance is as good as expected

● Jobs are mostly isolated, but fatal GPU errors will influence other jobs
○ Over-assignment of GPU memory can be caught before fatal error

12

Some limitations still remain

● Currently no easy way to allow for multi-GPU and split-GPU jobs at
the same time

○ HTCondor signaled that there will be limited support in the future

● GPU memory limitation not yet totally fail-safe

● No straightforward way to monitor resource usage of shared GPU

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Backup

13

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

The HTCondor MPS setup

● One MPS daemon exists for each GPU
○ assigned via CUDA_MPS_PIPE_DIRECTORY

● Jobs can request GPU memory as a custom resource via the HTCondor job submission file

● The memory resource is managed by using partitionable slots
○ One partitionable slot for each GPU
○ Does not work with multi-GPU jobs, but there are plans from HTCondor for this

● Job wrapper script detects this request and adds necessary env variables to exec env
○ CUDA_MPS_PIPE_DIRECTORY for demon assignment
○ CUDA_VISIBLE_DEVICES for GPU assignment
○ CUDA_MPS_PINNED_DEVICE_MEM_LIMIT for process specific memory limit

■ User can overwrite this if they want to use multiple contexts in the same job

● External monitoring script tracks total GPU memory limit (sum of all limits spawned by job)
○ Removes jobs that break requested GPU memory limit
○ Not 100% safe, but very short dead time (~1 s)

14

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Useful MPS commands

● How to start MPS software
○ nvidia-cuda-mps-control -d

● Set alternative MPS pipe/socket directory (also has to be set for processes on running GPU)
○ CUDA_MPS_PIPE_DIRECTORY=<GPU-uuid> nvidia-cuda-mps-control -d or <Process>

● Assign only specific GPUs to MPS software (will reorder ids of GPUs, e.g. 1,3,6 → 1,2,3)
○ CUDA_VISIBLE_DEVICES=<GPU-uuid> nvidia-cuda-mps-control -d

● How to stop MPS software
○ echo “quit” | nvidia-cuda-mps-control

● How to limit available GPU memory
○ CUDA_MPS_PINNED_DEVICE_MEM_LIMIT="<GPU-id>=<Memory-limit>" <Process>

● More information: https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en
 https://docs.nvidia.com/deploy/mps/index.html

15

https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en
https://docs.nvidia.com/deploy/mps/index.html

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Notes on MPS

● Only one user on a system may have an active MPS server.
● The MPS control daemon will queue MPS server activation requests from separate

users, leading to serialized exclusive access of the GPU between users regardless of
GPU exclusivity settings.

● In a batch environment, all jobs can be executed as the same user (e.g. “nobody”)
● All MPS client behavior will be attributed to the MPS server process by system monitoring

and accounting tools (e.g., nvidia-smi, NVML API).
● One MPS daemon can only manage around 40 contexts before performance degrades

● Can be alleviated by using multiple daemons (one per GPU)
● CUDA_MPS_PINNED_DEVICE_MEM_LIMIT only limits the available memory for one context

● It’s still possible to over-allocate memory with multiple improper contexts
● MPS will reorder indices of assigned GPUs (0,3,4 -> 0,1,2), UUIDs stay the same
● More information: https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en

 https://docs.nvidia.com/deploy/mps/index.html

16

https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en
https://docs.nvidia.com/deploy/mps/index.html

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

GPU “Out of memory” (OOM) crash

17

Default GPU behaviour

1. Memory is allocated from the entire scope

2. One process tries to allocate beyond the
scope of total available memory

3. All processes on the GPU die due to OOM

With MPS memory limit

1. Memory is allocated from the assigned scope

2. One process tries to allocate beyond the
scope of available memory

3. Only the specific processes that tried to over
allocate dies due to OOM

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Benchmark information

The machine:
● One node of the TOpAS cluster
● 255 CPU-threads of two AMD EPYC 7662 CPUs

(2 CPU threads per training used)
● 8 NVIDIA A100 GPUs (One GPU was used for all trainings)

The workload:
● Training of fully connected feed forward neural network
● 14 input variables
● ~2 Million input samples
● 3 hidden layers with 512 nodes each
● 6 output classes
● 600 samples per balanced batch
● ¾:¼ split between training and validation data
● Ran for 100 epochs each

18

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP) 19

MPS with docker

● 12 concurrent processes distributed
among a number of docker
containers with and without MPS

● No difference between the
different distributions

● MPS is able to function through
docker containers

● --icp=”host” has to be set for the
docker containers

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP) 20

Utilization

● High CPU utilization for low
degree of parallelism

● Utilization of CPU decreases
with increasing parallelism

● Pure GPU variant is limited due
to GPU occupation

● MPS and MIG variant are not
limited in this way

● Less GPU utilization as there
are fewer trainings on the
same hardware as MPS

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP) 21

Power draw

● The idle power draw is the same
for every variant except MIG

● The active power draw for the
CPU variants differs only slightly

● The GPU variants draw more
power in accordance with their
performed work

All power measurements have a systematic error of 5%

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Limits of MPS

● High number (>40) of contexts
lead to declining performance

● Multiple Daemons improve things
● Leads to questionable

performance patterns
○ Not clear what causes this

22

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Madgraph based benchmark for simulation on CPU and GPU

● Candidate for future GPU HEPScore benchmark [2]

● One of the main tasks performed in HEP computing

Same machine as before, run at maximum capacity

● Only achievable with MPS

Second Benchmark: Simulation

23

[https://github.com/madgraph5]

[mg5amc-madgraph4gpu-2022-bmk:v0.7]

● Compared to vectorized CPU setup

● Throughput increased by a factor of 17

● Energy efficiency increased by ~2

Significant improvement over best CPU result
[2] https://indico4.twgrid.org/event/14/contributions/325/

Tim Voigtländer - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Second Benchmark: Throughput

The benchmark recommends only one
concurrent copy when using a GPU

● Multiple copies per GPU are less
performant when not using MPS

● They are more performant when
using MPS

● The change is workload
dependent

Variants with >1 copies per GPU were
considered in the benchmark

24

