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Big GPUs and small applications

Modern HEP workflows often require GPU resources

● The range of how much they require is vast
● Many of them will not fully occupy a datacenter GPU on their own

➔ Hardware has to be shared to reach maximum utilization

Complex topic for batch systems with GPU resources

● Ideally, one GPU could be shared by multiple users
But...

● No guarantee that resource requirements match resource requests
● Little control over quality of executing software
● Shared resources might influence each other

➔ Jobs have to be as isolated as possible
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The TOpAS cluster near the T1 GridKa

● KIT provides GPU resources to CMS, ATLAS and Belle II opportunistically
● There is a mix of V100 and A100 GPUs available
● One full node was used for the tests

○ 8 A100 GPUs and 255 CPU threads

Medium scale machine learning as benchmark
● Training of an event classifier

○ Example from a real HEP workflow
● Up to 12 can fit in GPU memory at once
● Only actual training performance is considered
● Same workload as in the 2022 contribution [1]

Exact specifications and setup in backup

What are we working with?
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[1] https://indico.cern.ch/event/1106990/contributions/4991345/
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Bad performance with concurrent processes
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● Runtime increases close to linearly 
with the number of processes

● GPU occupation increases sharply 
when shared by processes

Most GPUs handle concurrent GPU calls 
sequentially via time slicing

[https://docs.nvidia.com/deploy/mps/topics/media/image3.png]
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Multi instance GPU (MIG)

Device setup to split one large GPU into pieces

● Up to seven pieces per GPU

● Each piece acts as its own GPU

● 1/8th of the GPU is reserved for overhead

MIG  MPS
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Multi-process service (MPS)

Service to optimize concurrent contexts

● Summarizes multiple contexts into one

● Optimized sharing

● It’s still one GPU

NVIDIA MIG sketch NVIDIA MPS sketch
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MIG  MPS
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Better performance with MPS

Runtime stays nearly constant, even 
with concurrent processes

● Better utilization of GPU capacity

● Only limited by device memory

MPS can have a great impact on the 
overall throughput

● GPU occupation in line with 
expected performance

➔ Reported GPU occupation without 
MPS can be misleading

MPS is beneficial in most cases where 
a GPU is shared between processes
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Performance comparison

All variants can be used with a batch system

● Small scale tasks occupying a whole GPU is 
inefficient

● Sharing the GPU improves throughput 
significantly

● Splitting the GPU with MIG has even higher 
throughput

● Depending on the task, MPS can be even 
faster than MIG due to limit of 7 pieces

MIG and MPS generally show best throughput

● Exact performance is workload dependent
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Throughput of jobs managed by HTC batch system
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Energy efficiency comparison

● Power usage of full machine measured 
over runtime of benchmark 

Throughput is related to energy efficiency

● Slow setups also waste energy

● A GPU with only one small task can 
have worse energy efficiency than CPU

● Sharing the GPU allows for higher 
efficiency

● MIG and MPS show best efficiency
○ Around four times better than CPU

Maximum energy efficiency can only be 
reached by relying on MPS or MIG
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GPU idle

Energy efficiency of various hardware setups
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MPS provides additional options to isolate GPU-processes compared to simple sharing
● Only fatal GPU failure will influence concurrent processes
● A hard limit for the amount of assignable GPU memory can be set

○ Prevents common issue of one process taking more memory than intended

There is no guarantee that users will apply these options on their own
● Some limitations can be set by the batch system itself

○ No perfect way to set a limit on the whole job

Perfect isolation is not possible, even with MPS, but the risks can be reduced

With limit set by MPS

A bad process will be stopped by the set limit

Safe with sensible limits

Without limit set by MPS

A bad process can kill everything on GPU

Not safe enough for GPU sharing

Job isolation
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Comparison of setup options
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Metric Exclusive GPU usage MIG MPS

Availability Default use for most GPUs Available for selected Nvidia 
Ampere GPUs and newer

Available for Nvidia Volta 
GPUs and newer

Concurrency Only one process allowed Up to seven processes per 
GPU with prior configuration No hard limit

Flexibility Exactly one slot Reconfiguration is difficult 
during active work 

No predefined slots or limits 
Custom limits can be set

Isolation Perfectly isolated Great isolation between 
pieces

Not fully isolated
Most issues handled on a 

per-process basis

Monitoring All monitoring can be 
performed on a per-job basis

Utilization and memory can 
be monitored separately

Only total GPU metrics can 
be monitored
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Summary and outlook

An HTCondor setup using MPS to share GPUs was successfully tested

● All requirements of MPS proved to be feasible in a batch environment

● Performance is as good as expected

● Jobs are mostly isolated, but fatal GPU errors will influence other jobs
○ Over-assignment of GPU memory can be caught before fatal error
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Some limitations still remain

● Currently no easy way to allow for multi-GPU and split-GPU jobs at 
the same time

○ HTCondor signaled that there will be limited support in the future

● GPU memory limitation not yet totally fail-safe

● No straightforward way to monitor resource usage of shared GPU
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Backup
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The HTCondor MPS setup

● One MPS daemon exists for each GPU
○ assigned via CUDA_MPS_PIPE_DIRECTORY 

● Jobs can request GPU memory as a custom resource via the HTCondor job submission file

● The memory resource is managed by using partitionable slots
○ One partitionable slot for each GPU
○ Does not work with multi-GPU jobs, but there are plans from HTCondor for this

● Job wrapper script detects this request and adds necessary env variables to exec env
○ CUDA_MPS_PIPE_DIRECTORY for demon assignment
○ CUDA_VISIBLE_DEVICES for GPU assignment
○ CUDA_MPS_PINNED_DEVICE_MEM_LIMIT for process specific memory limit

■ User can overwrite this if they want to use multiple contexts in the same job

● External monitoring script tracks total GPU memory limit (sum of all limits spawned by job)
○ Removes jobs that break requested GPU memory limit
○ Not 100% safe, but very short dead time (~1 s) 
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Useful MPS commands

● How to start MPS software
○ nvidia-cuda-mps-control -d

● Set alternative MPS pipe/socket directory (also has to be set for processes on running GPU)
○ CUDA_MPS_PIPE_DIRECTORY=<GPU-uuid> nvidia-cuda-mps-control -d or <Process>

● Assign only specific GPUs to MPS software (will reorder ids of GPUs, e.g. 1,3,6 → 1,2,3)
○ CUDA_VISIBLE_DEVICES=<GPU-uuid> nvidia-cuda-mps-control -d

● How to stop MPS software
○ echo “quit” | nvidia-cuda-mps-control

● How to limit available GPU memory
○ CUDA_MPS_PINNED_DEVICE_MEM_LIMIT="<GPU-id>=<Memory-limit>" <Process>

● More information: https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en
    https://docs.nvidia.com/deploy/mps/index.html
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https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en
https://docs.nvidia.com/deploy/mps/index.html
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Notes on MPS

● Only one user on a system may have an active MPS server.
● The MPS control daemon will queue MPS server activation requests from separate 

users, leading to serialized exclusive access of the GPU between users regardless of 
GPU exclusivity settings.

● In a batch environment, all jobs can be executed as the same user (e.g. “nobody”)
● All MPS client behavior will be attributed to the MPS server process by system monitoring 

and accounting tools (e.g., nvidia-smi, NVML API).
● One MPS daemon can only manage around 40 contexts before performance degrades

● Can be alleviated by using multiple daemons (one per GPU)
● CUDA_MPS_PINNED_DEVICE_MEM_LIMIT only limits the available memory for one context

● It’s still possible to over-allocate memory with multiple improper contexts
● MPS will reorder indices of assigned GPUs (0,3,4 -> 0,1,2), UUIDs stay the same
● More information: https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en

    https://docs.nvidia.com/deploy/mps/index.html
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GPU “Out of memory” (OOM) crash
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Default GPU behaviour

1. Memory is allocated from the entire scope

2. One process tries to allocate beyond the 
scope of total available memory

3. All processes on the GPU die due to OOM

With MPS memory limit

1. Memory is allocated from the assigned scope

2. One process tries to allocate beyond the 
scope of available memory

3. Only the specific processes that tried to over 
allocate dies due to OOM
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Benchmark information

The machine: 
● One node of the TOpAS cluster
● 255 CPU-threads of two AMD EPYC 7662 CPUs 

(2 CPU threads per training used)
● 8 NVIDIA A100 GPUs (One GPU was used for all trainings)

The workload:
● Training of fully connected feed forward neural network
● 14 input variables
● ~2 Million input samples
● 3 hidden layers with 512 nodes each
● 6 output classes
● 600 samples per balanced batch
● ¾:¼ split between training and validation data
● Ran for 100 epochs each
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MPS with docker

● 12 concurrent processes distributed 
among a number of docker 
containers with and without MPS

● No difference between the 
different distributions

● MPS is able to function through 
docker containers

● --icp=”host” has to be set for the 
docker containers
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Utilization

● High CPU utilization for low 
degree of parallelism

● Utilization of CPU decreases 
with increasing parallelism

● Pure GPU variant is limited due 
to GPU occupation

● MPS and MIG variant are not 
limited in this way

● Less GPU utilization as there 
are fewer trainings on the 
same hardware as MPS
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Power draw

● The idle power draw is the same 
for every variant except MIG

● The active power draw for the 
CPU variants differs only slightly

● The GPU variants draw more 
power in accordance with their 
performed work

All power measurements have a systematic error of 5%
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Limits of MPS

● High number (>40) of contexts 
lead to declining performance

● Multiple Daemons improve things
● Leads to questionable 

performance patterns
○ Not clear what causes this
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Madgraph based benchmark for simulation on CPU and GPU

● Candidate for future GPU HEPScore benchmark [2]

● One of the main tasks performed in HEP computing

Same machine as before, run at maximum capacity

● Only achievable with MPS

Second Benchmark: Simulation
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[https://github.com/madgraph5]

[mg5amc-madgraph4gpu-2022-bmk:v0.7]

● Compared to vectorized CPU setup

● Throughput increased by a factor of 17

● Energy efficiency increased by ~2

Significant improvement over best CPU result
[2] https://indico4.twgrid.org/event/14/contributions/325/
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Second Benchmark: Throughput

The benchmark recommends only one 
concurrent copy when using a GPU

● Multiple copies per GPU are less 
performant when not using MPS

● They are more performant when 
using MPS

● The change is workload 
dependent

Variants with >1 copies per GPU were 
considered in the benchmark
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