4]}

Karlsruhe Institute of Technology

Institute of Experimental Particle Physics

Pinpoint resource allocation for GPU batch applications

Tim Voigtlander, Manuel Giffels, Glnter Quast, Matthias Schnepf, Roger Wolf
tim.voigtlaender@kit.edu

Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

Big GPUs and small applications

Modern HEP workflows often require GPU resources

e Therange of how much they require is vast — [GPU job]
e Many of them will not fully occupy a datacenter GPU on their own
->» Hardware has to be shared to reach maximum utilization . .
Single jobs
Complex topic for batch systems with GPU resources
e Ideally, one GPU could be shared by multiple users

But...
No guarantee that resource requirements match resource requests

Little control over quality of executing software
e Shared resources might influence each other

> Jobs have to be as isolated as possible

Concurrent jobs

What are we working with?

The TOpAS cluster near the T1 GridKa

e KIT provides GPU resources to CMS, ATLAS and Belle Il opportunistically
e Thereis a mix of V100 and A100 GPUs available
e One full node was used for the tests /

o 8A100 GPUs and 255 CPU threads GridKa /
3)

Medium scale machine learning as benchmark

e Training of an event classifier
o Example from a real HEP workflow

e Upto 12 can fitin GPU memory at once
e Only actual training performance is considered
e Same workload as in the 2022 contribution [1]

Exact specifications and setup in backup
[1] https://indico.cern.ch/event/1106990/contributions/4991345/

Bad performance with concurrent processes

. L :]
Rt.Jntlme increases close to linearly 40 JUREVEEvER IR v VR 7y 11
with the number of processes ></,/><’ e
o 35 |) +/,
e GPU occupation increases sharply o e - 80
30 -
when shared by processes K _4‘/*)
— / [—
c / £
£ 25 - p >
Most GPUs handle concurrent GPU calls £ / F 60 O
. . . . s e 27 @©
sequentially via time slicing £ 20 ¢ ,,+ 2
= /,X /,F —}- Runtime 3k S
=—DME_I, on GPU Schedule e 151 . -3&- Occupancy =
: . .) 4 &
10w °
+f’ K 20
5 -
K | Kernel Kernel
R

Number of concurrent processes
[https://docs.nvidia.com/deploy/mps/topics/media/image3.png]

MIG MPS

Multi instance GPU (MIG) Multi-process service (MPS)

Device setup to split one large GPU into pieces Service to optimize concurrent contexts

e Upto seven pieces per GPU e Summarizes multiple contexts into one
e Each piece acts as its own GPU e Optimized sharing
o

Time

1>* On GPU Schedule
1/8th of the GPU is reserved for overhead

e It's still one GPU

5GB 5GB 5GB 5GB 5GB 5GB 5GB

c::££%:$>

On GPU Schedule

GPU Instance

e Fixed partition of memory and compute

e Fixed amount of “other” GPU Engines
(depending on size)

1 1 1 1 1

1
compute [compute | compute| compute

compute | compute

NVIDIA MIG sketch NVIDIA MPS sketch

MIG MPS

Naive approach

One process for
each piece %

All processes
merged into one

MPS server

Split GPU Merge processes

<via MIG D Q via MPS >

Only one process per device

Better performance with MPS

40 1

Runtime [min]
- - N N w w
o (] o wm o wn

wm

e

IX’

AL —d e

1

. Smggaa

KX

: Runtime, no MPS
%’ .k =4-- Runtime, MPS

Occupancy, no MPS

->&- Occupancy, MPS

Number of concurrent processes

-,X'
B
B R

- 100

- 80

- 60

- 40

- 20

GPU occupancy [%]

Runtime stays nearly constant, even
with concurrent processes

e Better utilization of GPU capacity
e Only limited by device memory

MPS can have a great impact on the
overall throughput

e GPU occupation in line with
expected performance

-> Reported GPU occupation without
MPS can be misleading

MPS is beneficial in most cases where
a GPU is shared between processes

Performance comparison

All variants can be used with a batch system ,
[Throughput of jobs managed by HTC batch system J

e Small scale tasks occupying a whole GPU is

inefficient
v 55
e Sharing the GPU improves throughput g '
significantly L%_ 20|
o Splitting the GPU with MIG has even higher =
throughput % 1.5
-]
e Depending on the task, MPS can be even E 1.0
faster than MIG due to limit of 7 pieces %
= 0.5
O
MIG and MPS generally show best throughput ™
0.0- - -
e Exact performance is workload dependent Exclusive SSI:f;rFi’AZ MIG MPS

Energy efficiency comparison

[Energy efficiency of various hardware setups] e Power usage of full machine measured
over runtime of benchmark

~
o

Throughput is related to energy efficiency

()]
o

e Slow setups also waste energy

wu
o

e A GPU with only one small task can
have worse energy efficiency than CPU

B
o

e Sharing the GPU allows for higher
efficiency

MIG and MPS show best efficiency
o Around four times better than CPU

W
o

Energy used per training [kJ]
S
([

[
o

Maximum energy efficiency can only be

CPU Exclusive Simple MIG MPS reached by relying on MPS or MIG
sharing

o

Job isolation

MPS provides additional options to isolate GPU-processes compared to simple sharing
e Only fatal GPU failure will influence concurrent processes
e A hard limit for the amount of assignable GPU memory can be set
o Prevents common issue of one process taking more memory than intended

T)
PlIlPllP -Without limit set by MPS ~ With limit set by MPS PIlPIP -

A bad process can kill everything on GPU A bad process will be stopped by the set limit

_ Not safe enough for GPU sharing Safe with sensible limits)

There is no guarantee that users will apply these options on their own
e Some limitations can be set by the batch system itself
o No perfect way to set a limit on the whole job

Perfect isolation is not possible, even with MPS, but the risks can be reduced

Comparison of setup options

Metric Exclusive GPU usage MIG MPS
. Available for selected Nvidia Available for Nvidia Volta
Availability Default use for most GPUs Ampere GPUs and newer GPUs and newer
Up to seven processes per .
Concurrency Only one process allowed GPU with prior configuration No hard limit
.y Reconfiguration is difficult No predefined slots or limits
Flexibility Exactly one slot : : .
during active work Custom limits can be set
Great isolation between i Aol
Isolation Perfectly isolated - Most issues handled on a
P per-process basis
" All monitoring can be Utilization and memory can Only total GPU metrics can
Monitoring

performed on a per-job basis

be monitored separately

be monitored

Tim Voigtlander - tim.voigtlaender@kit.edu - Karlsruhe Institute of Technology (KIT) - Institute of Experimental Particle Physics (ETP)

11

Summary and outlook

An HTCondor setup using MPS to share GPUs was successfully tested
e Allrequirements of MPS proved to be feasible in a batch environment
e Performance is as good as expected

e Jobs are mostly isolated, but fatal GPU errors will influence other jobs
o Qver-assignment of GPU memory can be caught before fatal error

Some limitations still remain

e Currently no easy way to allow for multi-GPU and split-GPU jobs at
the same time
o HTCondor signaled that there will be limited support in the future

e GPU memory limitation not yet totally fail-safe

e No straightforward way to monitor resource usage of shared GPU

Backup

The HTCondor MPS setup

One MPS daemon exists for each GPU
o assigned via CUDA_MPS_PIPE_DIRECTORY

Jobs can request GPU memory as a custom resource via the HTCondor job submission file

The memory resource is managed by using partitionable slots
o One partitionable slot for each GPU
o Does not work with multi-GPU jobs, but there are plans from HTCondor for this

Job wrapper script detects this request and adds necessary env variables to exec env
o CUDA_MPS_PIPE_DIRECTORY for demon assignment
o CUDA_VISIBLE_DEVICES for GPU assignment
o CUDA_MPS_PINNED_DEVICE_MEM_LIMIT for process specific memory limit
m User can overwrite this if they want to use multiple contexts in the same job

External monitoring script tracks total GPU memory limit (sum of all limits spawned by job)
o Removes jobs that break requested GPU memory limit
o Not 100% safe, but very short dead time (~1 s)

Useful MPS commands

How to start MPS software
o nvidia-cuda-mps-control -d

Set alternative MPS pipe/socket directory (also has to be set for processes on running GPU)
o CUDA_MPS_PIPE_DIRECTORY=<GPU-uuid> nvidia-cuda-mps-control -d or <Process>

Assign only specific GPUs to MPS software (will reorder ids of GPUs, e.g. 1,3,6 — 1,2,3)
o CUDA_VISIBLE_DEVICES=<GPU-uuid> nvidia-cuda-mps-control -d

How to stop MPS software
o echo “quit” | nvidia-cuda-mps-control

How to limit available GPU memory
o CUDA_MPS_PINNED_DEVICE_MEM_LIMIT="<GPU-id>=<Memory-limit>" <Process>

More information: https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en
https://docs.nvidia.com/deploy/mps/index.html

https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en
https://docs.nvidia.com/deploy/mps/index.html

Notes on MPS

e Only one user on a system may have an active MPS server.
e The MPS control daemon will queue MPS server activation requests from separate
users, leading to serialized exclusive access of the GPU between users regardless of
GPU exclusivity settings.
e In abatch environment, all jobs can be executed as the same user (e.g. “nobody”)
e All MPS client behavior will be attributed to the MPS server process by system monitoring
and accounting tools (e.g., nvidia-smi, NVML API).
e One MPS daemon can only manage around 40 contexts before performance degrades
e Can be alleviated by using multiple daemons (one per GPU)
e CUDA_MPS_PINNED_DEVICE_MEM_LIMIT only limits the available memory for one context
e |t's still possible to over-allocate memory with multiple improper contexts
e MPS will reorder indices of assigned GPUs (0,3,4 -> 0,1,2), UUIDs stay the same
e More information: https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en
https://docs.nvidia.com/deploy/mps/index.html

https://man.archlinux.org/man/extra/nvidia-utils/nvidia-cuda-mps-control.1.en
https://docs.nvidia.com/deploy/mps/index.html

GPU “Out of memory” (OOM) crash

1. Memory is allocated from the entire scope

2. One process tries to allocate beyond the l
scope of total available memory

3. All processes on the GPU die due to OOM DED::
With MPS memory limit

1. Memory is allocated from the assigned scope l

2. One process tries to allocate beyond the
3. Only the specific processes that tried to over
allocate dies due to OOM

Benchmark information

The machine:

e One node of the TOpAS cluster
e 255 CPU-threads of two AMD EPYC 7662 CPUs
(2 CPU threads per training used)

e 8 NVIDIA A100 GPUs (One GPU was used for all trainings)
The workload:

e Training of fully connected feed forward neural network
14 input variables
~2 Million input samples
3 hidden layers with 512 nodes each
6 output classes
600 samples per balanced batch
%:a split between training and validation data
Ran for 100 epochs each

MPS with docker

e 12 concurrent processes distributed

among a number of docker 20| i s el R T T E 3¢
containers with and without MPS
35 A
e No difference between the o
different distributions 0
S 254
e MPSis able to function through E
docker containers 2 207
e --icp="host” has to be set for the 2T
docker containers l
R DTSR D Mo mm e Memmmmme X mmmn X
51 =<€- Runtime, MPS
-»- Runtime, no MPS
? 1x|12 2;(6 3)24 4)'(3 6;(2 12|x1

Number of docker containers X processes per container

Utilization

e High CPU utilization for low

are fewer trainings on the
same hardware as MPS

degree of parallelism e 100 % ~N
£
e Utilization of CPU decreases o X
with increasing parallelism § 801 <
e Pure GPU variant is limited due S X
to GPU occupation OS,J, i X X v
e MPS and MIG variant are not & g
limited in this way £ X Average CPU utilization
@ X Average GPU utilization X
e Less GPU utilization as there = 204 . J x
= |
T
3

N/ N/ N/ NS

0 T T T T T T T
2CPU 4CPU 8CPU 16CPU GPU MPS MIG

All power measurements have a systematic error of 5%
Power draw P y

e Theidle power draw is the same

for every variant except MIG X
y P o X Active power draw o X
e The active power draw for the 12004 X Idle power draw %
CPU variants differs only slightly
1000 1
e The GPU variants draw more E X X X X
power in accordance with their = 800 ¢
erformed work S X
Y g B4 X X X X X
&
400
200

0 Ll T Ll T Ll T Ll
2CPU 4CPU 8CPU 16CPU GPU MPS MIG

Limits of MPS

e High number (>40) of contexts

lead to declining performance 0.8 1
e Multiple Daemons improve things 0.7 - |
e Leads to questionable
performance patterns 0.6 1 h
o Not clear what causes this X 05 4 ,
e v
o .
= 0.4 1
s |
=03 |
0.2 1
0.1 —— CPU utilization: 0.388
—— GPU utilization: 0.544 (|
0.0 T T T T T 5
0 200 400 600 800 1000

Runtime in seconds

Second Benchmark: Simulation

= N
(6] o

Throughput [1e6/s]
(=)
o

o

8]

Madgraph based benchmark for simulation on CPU and GPU

e Candidate for future GPU HEPScore benchmark [2]

e One of the main tasks performed in HEP computing

Same machine as before, run at maximum capacity

Py On|y achievable with MPS [https://github.com/madgraph5]

=
o

e Compared to vectorized CPU setup
e Throughputincreased by a factor of 17

e Energy efficiency increased by ~2

Energy efficiency [1e3/)]

e coU e Significant improvement over best CPU result
[mg5amc-madgraph4gpu-2022-bmk:v0.7] [2] https://indico4.twgrid.org/event/14/contributions/325/

Second Benchmark: Throughput

The benchmark recommends only one

~¢] double: MPS on 5 - y S
concurrent copy when using a GPU D sihgleMPson | g '
251 4m mean: MPS on
e Multiple copies per GPU are less g Sﬁ,‘;‘.’fg“ff;i‘;“
performant when not using MPS 20; {71 tnean:MES, ol i s e o ol
o They are more performant when & " il
— 15 + 4
using MPS £ S
e The change is workload B 5g).- w2
dependent ST m- - - = - m - - - -
o . . Sd—_—__d———__d____-d
Variants with >1 copies per GPU were
considered in the benchmark
" ; ; 3

Number of concurrent copies per GPU

