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Introduction o “’

e Language models have revolutionized the machine understanding on natural
languages.
o However, they do not understand scientific data.
e Scientific data are multidimensional, continuous/discrete measurements.
o Cannot apply LLMs directly on these data
e Reconstructing particles from the raw HEP detector data is fundamental for all physics
analysis.
e We aims to leverage language models to embed detector data into a latent space that
can be useful for particle reconstruction, opening new avenues for understanding
detector languages.
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hierarchical approach rrece) A|

Detector readouts: analog or digital signals from the detector
Raw data: space points ID, energies in cells

Intermediate objects: particle trajectories and particle energy
deposit

High-level objects: electron, muon, photon, jets, tau-lepton, et al
Physics objects: Higgs boson, W/Z bosons, et al

e Most reconstruction algorithms are
sequential. Each level only accesses to
its immediate predecessor objects.

e Particle Flow algorithm is global for
high-level object reconstruction.

e See CMS particle flow algorithm in
arXiv:1706.04965.

Physics
objects



https://arxiv.org/abs/1706.04965

Previous work: ML approach coeeed]
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Int(e)rgpeciiate Recent studies focus on using Machine Learning Models to replace
ects

conventional particle flow algorithms.

Graph e F. Bello et al, Towards a Computer Vision Particle Flow, arXiv:2003.08863
Construction

e J. Pata et al, MLPF: Efficient ML particle flow with GNN, arXiv:2101.08578

e and others

Graph
learning ML models improve physics performance, reduce

computational requirements, and are suitable for
High-level Physics using GPUs.
objects objects
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Current Approach
Our Approach
Inner Detector Muon Spectrometer Calorimeter
\ } Inner Detector alorimeter Muon Spectrometer

Tracking Alg. yking Alg. Clustering Alg. Cc Sp

Tracks _ Energy Clusters \ /

R v

& _::j::-- ...... i Language Model-based Approach
v aT T 7 S 4
Conventional PF Approach ML-based PF Approach
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Physics Objects: Higgs boson, W/Z boson, etc.
High-level Objects: Jets, Photons, etc.

Analysis

Our proposal is to train a language model for
Physics Objects: Higgs boson, W/Z boson, etc. reconstructing physics objects with raw detector data.
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LLM for detector data understanding eeeer?]
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LLM for detector understanding

The core idea is to learn a continuous embedding
space that can then be adapted or fine tuned to new

\ l / problems.

Language Model-based Approach

Inner Detector Calorimeter Muon Spectrometer

l Often use self-supervised learning on surrogate
tasks, including Masked Data Modeling, contrastive
learning, and meta learning.

l e Masked Particle Modeling on Sets
Neural Layer e Z.Zhao Self supervised learning on jet tagging

|

Physics Objects: Higgs boson, W/Z boson, etc.

Continous Embedding Space
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https://arxiv.org/abs/2401.13537
https://indico.cern.ch/event/1330797/contributions/5796859/attachments/2816510/4918734/ACAT2024-SSL-Zhao.pdf

HEP detector vs NLP

Analogy between HEP and NLP

Detector elements

All detector elements

Particle trajectories or
showers

Collision Events

Events from the same
physics process
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Language Model for Tracking

A first step

Inner Detector

~—

Our Approach

Calorimeter

v

Muon Spectrometer

J—

Language Model-based Approach

\4

Physics Objects: Higgs boson, W/Z boson, etc.
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Sentence vs Tracks ceceee] i
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Tracks are represented by a list of detector modules

“This is an input” [ [(X, Y, 2), ..., (X, ¥, 2)] }
Tokenization @ b
[CLS]  This is an input : ISEF]
101 2023 2003 1037 7953 1012 102 [CLS] (X,¥,2) ... (X,Y,2) [SEP]

2 UMID ... UMID 3

U

[ Embeddings }

Embeddings &

0.0390, -0.0558, -0.0440, 0.0119, 0069, 0.0199, -0.0788,
-0.0123, 0.0151, -0.0236, -0.0037, 0.0057, -0.0095, 0.0202,
-0.0208, 0.0031, -0.0283, -0.0402, -0.0016, -0.0099, -0.0352,
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Input data eeen
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Use the TrackML dataset, and tokenize all detector modules.

Schematic of detector modules
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Total 18737 detector modules in the TrackML dataset. We use data from volume 8, 13, and
17, in which there are 14000 modules.
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TrackSorting coceeny]
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Hit vectors sorted by r in input sequence Hit vectors in output sequence

TR = L

A\
Track grouping denoted by color Y
Track 1 Track 2

e Inputs are a list of space points (represented by their associated detector modules) sorted by their

distances from the collision point.
Outputs are track candidates. SEP is a special token that separates tracks.

As a starting point, we asks the model to sort detector modules from two true tracks.
o Inreality, there are ~10,000 tracks produced by HL-LHC.
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Word2vec ceeeed]
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- Target Word
Context Window  Targe Tror - Word2vec (arXiv:1301.3781) is used to create

[&The h chased the fox } embedding vectors for each token in a vocabulary
given a “text corpus” (a large set of sentences),

especially, the continuous bag-of-words model.

1xV

“The” ] * In final embedding space, words used in similar
eggoed?n(gs v + contexts are close together
“chased” ] —  “Dog” and “Cat” are more similar than “Dog”
and “Bridge”

Learned 1xE * We could use the TrackBERT model to embed the
embedding [ ] detector module in the future.

Softmax [ e E - Embedding dimension

classifier layer

V - Size of Vocabulary (ex: number of words in English language)
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https://arxiv.org/pdf/1301.3781.pdf
https://arxiv.org/abs/2402.10239

Transformer Model

® Only a single attention head
® 6 encoding followed by 6 decoding layers
® The feed forward layers has dimension 256

® The output dimension is 14000 + 2
o  (number of modules + SOS and SEP)

® 1.6 M training parameters.
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Qutput
Probabilities

[ Linear |
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Track finding and evaluation rrece) “’

The procedure for reconstructing tracks

e Model predicts a probability distribution of the next module

e Choose the next module with the highest probability such that it
o exists in the input sequence
o has not been used in the output sequence

e Stop once all modules in the input sequence are used in the output sequence.

Matching criteria for calculating tracking efficiency. If 75% of a reconstructed track matches to a

true particle, that particle is considered as identified.
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Tracking Performance cecee?]

BERKELEY LAB

Only used data from barrel region, no noise hits, at least 6 hits per track
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e Good performance for low-pT particles, but not so in high-pT.
e |tis robust against the track lengths.
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Visual Results
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Conclusion and Outlook creee) «’

e With the tokenized detector elements, we explored different approaches to leverage
language models for particle tracking.

o BERT for encoding detector modules

o TrackSorting for regional track finding

e The TrackingSorting algorithm achieves good track finding performance on a dummy data.

o Test on realistic data

e It would be interesting to teach language models others physics. E.g. particle interactions

with detectors:

o Input sequence: tokenized particle information (like codebook in arXiv:2401.13537)

o  Output sequence: a list of detector data
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