

Al-based Data Popularity, Placement Optimization for a Tiered Storage architecture at BNL/SDCC Facility

Qiulan Huang, James Leonardi, Carlos Deleon, Vincent Garonne, Shinjae Yoo

Brookhaven National Laboratory

ACAT 2024, SBU, NewYork - Mar 11 - Mar 15, 2024

Storage Overview at BNL/SDCC

- Tiered Storage
 - Encompasses various storage technologies to serve different workloads and use cases (HPC posix access, HTC grid access, …)
 - Involve different generations of storage over a period

Data Temperature (Take ATLAS data for example)

Jan 1, 2023-Dec 31, 2023, ~37 million files

Hot: Last access in the last month Warm: Last access in the last 6 months Cold: Last access between 6 months and one year

AI/ML For Storage Optimization

Motivation

- In the current tiered storage "class" system at the Data Center
 - Unused data is stored on expensive storage
 - Fast IO storage is not currently used effectively

Goals

- Design an efficient monitoring platform to collect the relevant information from various distributed data sources
- Develop an optimal data management system for the data center to maximize usable space while minimizing access latency, within budget, hardware, and compliance constraints
 - Heavy use of storage, metadata and data popularity information
 - Develop a precise AI/ML prediction model to possibly forecast the future usage of the data
 - Orchestration of data for optimal movement and placement

Data collection

- Has collected data of the past 2 years
 - Data volume: ~11TB
 - **~10GB** in average per day, **5~8 million events** per day
 - Data source: billing logs, domain logs, etc from various experiments like usatlas, Belle2, etc

Time: one day	size	records
Raw data	13GB	5,604,498
Preprocessed data	2.7GB	5,604,498

Data preprocessing

- Define and generate the tabular data or comma-separated values (CSV) file format for data training and facilitates finding patterns between files
 - \circ pnfsid
 - Access Count
 - Access Timestamps
 - Rucio Scope (mc15_13TeV)
 - Task ID
 - Datatype (DAOD, EVNT, HIST, etc.)
 - Avg Time Between Accesses
 - Action(create, transfer, delete,)
 - User ID

File ID	path	taskid	datatype	scope	First_Access	Last_Access	
file_1							
file_2							

o ...

pnfsid|path|taskid|datatype|scope|accesscount|clientips|protocols|actions|firstaccess|accesstimes|lastaccess|mintimebetween|avgtimebetween|maxtimebetween|errorcodes 0000A3EECFE022224142A68A0037FE3A446D|/pnfs/usatlas.bnl.gov/BNLT0D1/rucio/mc23_13p6TeV/d6/ad/DAOD_PHYSLITE.35040159._000250.pool.root.1|35040159|DAOD_PHYSLITE|mc23_13p6TeV|1|{'130.199.206.137'}|{'xrc otd-5.0'}|{'request'}2023-11-01 00:00:02.540000-0400|{'2023-11-01 00:00:02.540000-0400'}2023-11-01 00:00:02.540000-0400|0|0|0|{'0'} 00008583BBF8DD8A4B0787679565564E2794|/pnfs/usatlas.bnl.gov/BNLT0D1/rucio/mc23_13p6TeV/1e/d6/DAOD_PHYSLITE.35040159._000342.pool.root.1|35040159|DAOD_PHYSLITE|mc23_13p6TeV|1|{'130.199.206.149'}|{'xrc

otd-5.0'}[('request'][2023-11-01 00:05.428000-0400]('2023-11-01 00:00:05.428000-0400'][2023-11-01 00:00:05.428000-0400]0[0][0]['0']

000058B7CD9318E44138857679E39F0E5B17|/pnfs/usatlas.bnl.gov/BNLT0D1/rucio/mc23_13p6TeV/a4/60/DAOD_PHYSLITE.35040159._000330.pool.root.1|35040159|DAOD_PHYSLITE|mc23_13p6TeV|1|{'130.199.156.199'}|{'Xrcord-5.0'}|{'request'}2023-11-01 00:00:06.400000-0400|{'2023-11-01 00:00:06.400000-0400}|2023-11-01 00:00:06.400000-0400|0|0|{'13}

000058BC8CE6F325496B982EF0ABF2B2AF05|/pnfs/usatlas.bnl.gov/BNLT0D1/rucio/mc23_13p6TeV/7d/9c/DAOD_PHYSLITE.35040159._000253.pool.root.1|35040159|DAOD_PHYSLITE|mc23_13p6TeV|1|{'130.199.159.140'}|{'xrc otd-5.0'}|{'request'}2023-11-01 00:00:06.777000-0400|{'2023-11-01 00:00:06.777000-0400}|{2023-11-01 00:00:06.777000-0400}|0|0|{'0'}

0000223C108F5ED14EB59CAA13263B97E30F|/pnfs/usatlas.bnl.gov/BNLT0D1/rucio/mc20_13TeV/01/97/A0D.35261114._000644.pool.root.1|35261114|A0D|mc20_13TeV|2|{'130.199.206.204'}|{'Xrootd-5.0'}|{'request'}|2(23-11-01 00:00:07.714000-0400|{'2023-11-01 00:00:07.714000-0400'}|2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'2023-11-01 00:00:07.757000-0400|{'0}}}}

Data Analysis- Access Distribution

- Majority of files accessed less than 200 times
- As files are accessed more, time between accesses tends to decrease
- Rightmost plot trimmed to show patterns

Exploring Data Correlation

- Since we predict the data popularity in the future, it will be useful to know which files are accessed with each other
 - If one file is accessed, this can push other files to become 'hot' as well.
 - Goal: Generate a Co-Occurrence Matrix
 - Visualize which files are accessed with each other.
- For figure on right
 - Each number represents a different file
 - Put all files along each axis
 - Count how many times 1 followed by 0

Example of co-occurrence matrix.

Source https://www.researchgate.net/figure/Gray-level-co-occurrence-matrix -calculation-example-For-interpretation-of-the_fig5_273731213

The Data Co-occurrence Matrix

Group by any desired attribute: Task ID, Rucio Scope, Datatype, etc. Patterns appear along diagonal Denote highly correlated groupings

- Matrices are expensive (quadratic time + space complexity)
- Focus on highly-accessed files (150+ access times, 90K files)
 - Likely to be accessed again
 - The matrix size reduce from 23 million ×23 million to 90K×90K

Data Analysis- Clustering

- Perform unsupervised learning
- Explore the patterns that help to differentiate the data
- A clear pattern in data type shown in the matrix correlation as well as the dendrogram hierarchical clustering and the K-means clustering
- All 3 clustering methods show a pattern is connected to the datatype feature

Data Training

- Data samples: 6 months data (~23 million files)
- **Features**:hold patterns that were shown in previous slide ['taskid', 'datatype', 'scope', 'accesscount', 'avgtimebetween']
- Feature importance

taskid features: 0.4534

avgtimebetween features: 0.1404

accesscount features: 0.1066

datatype features: 0.2193

scope features: 0.0803

Sum of importances for features: 1.0000

→ The features we used to train our model all impact the model differently. Some of our features impact the model more than others. The % of each feature tells us how much of an impact it is to the decision tree when determining the classification

Prediction Model and Results

Model Architecture:

- Input of the model: one-hot encoding of the Categorical columns
- Output of the model: hot/warm/cold classification

Model Training:

- Features: ['taskid', 'datatype', 'scope', 'accesscount', 'avgtimebetween']
- · Labeled data temperature based on the last accessed file which we removed from the training
- Randomly selected 60k samples to use for model training
 - 20k samples for each Hot, Warm, Cold 12k for validation(4k each type) and 48k for training

Results(More details see the the backup slides 19-23):

- The model's performance is evaluated on the different sets to assess its predictive accuracy, precision, and recall
- With the larger dataset, the accuracy improves, highlighting the benefits of increased training data
- Precision improves with the more even # of each type(hot/warm/cold)

	Set 1 (Initial 60K)	Set 2 (Top 300K)	Set 3 (Total 23M)	Set 4 (Random 1.5M)	Set 5 (Random 1.5M, Even # of each type)
Accuracy	91.68%	90.70%	91.81%	90.40%	90.86%
Recall	91.66%	92.00%	91.33%	91.66%	91.00%
Precision	91.66%	82.33%	80.33%	74.33%	91.33%

Labeled vs Prediction popularity

Hot: 0-1 Week Warm:1 week - 3 months Cold: 3+ months

Policy engine

- The objective is to propose and evaluate data migration strategies for optimizing data storage
- The input data output(y)=input(x), y contains {hot, warm, cold}
- Build a model to decide the target storage class for data migration
 - Metrics: user response time, load, CPU, disk space,etc
 - Define different weights for the metrics, like W¹,W²,W³,W⁴...W^N, W¹+W²+W³+W⁴+...+W^N=1

> IF target_storage_class: MIGRATE TO(file, target storage class)

Conclusion

- The exploratory data analysis provides useful patterns for data training
- The accuracy of prediction is up to 91.81%
- The policy engine is designed to optimize the data storage based on the predicted data popularity
- Next steps
 - Policy engine will be tested and integrated into the current storage
 - Testing model for degradation of accuracy over time
 - XGBoost hyperparameter optimization, allows more customizability for the data
 - Training more data with new labels, like 1 month hot, 1-6 month warm, 6+ month cold, etc
 - Test for other possible features that can be helpful to improve the model further

Thank you!

Backup

DAOD_T0PQ1: 100.0%

DADD_PHTS: 70.0% DADD_TOPDI: 12.3% DADD_TOPDI: 12.3% DADD_STOPDI: 15.% DADD_STOPMC: 15% DADD_STOPMC: 15% DADD_STOPMC: 15% DADD_STOPMIS: 1.5%

DAOD_PHYS: 69.5% DAOD_TOPQ1: 29.9% DAOD_HIGG8D1: 0.6%

20 Clusters

HITS: 87.5% RDO: 9.2% DAOD_PHYS: 2.1% DAOD_TOPQ1: 1.2%

DACD_TOPQ1: 99.1% DACD_PHYS: 0.5% RDO: 0.4%

Brookhaven⁻ National Laboratory

Prediction model and results

Model training: 60K Accuracy: 0.9168333333333333 Classification Report:

	precision	recall	f1-score	support
Cold 0	0.93	0.91	0.92	4014
vvarm 1	0.88	0.89	0.89	3903
HOT 2	0.94	0.95	0.94	4023
accuracy			0.92	12000
macro avg	0.92	0.92	0.92	12000
weighted avg	0.92	0.92	0.92	12000

Confusion Matrix: [[3660 306 48] 0 [244 3525 194] 1 [52 154 3817]] 2 0 1 2

Ø	Brookhaven ⁻ National Laboratory
---	--

Prediction model and results (cont.)

0.91

0.86

0.91

299603

299603

299603

Top 300,000 access count

Accuracy

macro avg

weighted avg

Accuracy: 0.9070202901840102 Classification Report:

0.82

0.94

precision recall f1-score support

Cold	0	0.88	0.87	0.88	20549
Warm	n 1	0.99	0.90	0.94	244456
Hot	2	0.60	0.99	0.75	34598

0.92

0.91

Counts Percentage 1 244456 0.815933 2 34598 0.115479 0 20549 0.068587

Confusion Matrix: [[17920 2585 44] [2347 219523 22586] [54 241 34303]]

Prediction model and results (cont.)

Random 1,500,000

Accuracy	: 0.90403	998623	00489						
Classification Report:									
	precision	recall	f1-scor	e sup	port				
0	0.95	0.91	0.93	842	2949				
1	0.90	0.89	0.89	630	126				
2	0.38	0.95	0.54	258	841				
accura	су		0.90	1498	3916				
macro a	avg 0.7	74 0	.92 0	.79	1498916				
weighted	avg 0	.92	0.90	0.91	1498916				

Counts Percentage 0 842949 0.562372 1 630126 0.420388 2 25841 0.017240

Confusion Matrix: [[770981 60067 11901] [41767 559450 28909] [249 943 24649]]

Prediction model and results (cont.)

Random 1,500,000(Even # of each type)

Accuracy: 0.90868

Classification Report:

precision recall f1-score support

00.940.960.9550000010.840.930.8850000020.960.840.89500000

Confusion Matrix:

[[481229 14049 4722] [23935 464196 11869]

[8663 73742 417595]]

accuracy	0.9	1 150	0000	
macro avg	0.91	0.91	0.91	1500000
weighted avg	0.91	0.91	0.91	1500000

Prediction model and results

0.92

0.92

weighted avg 0.93

Total 6 months data: 23M Accuracy: 0.9181894871283923 Confusion Matrix: Classification Report: [[16903744 787431 680407] precision recall f1-score support 92564 2454124 153249] 48712 126995 1847092]] 0 0.99 0.92 0.95 18371582 1 0.73 0.91 0.81 2699937 2 0.69 0.91 0.79 2022799 0.92 23094318 accuracy 0.91 0.85 23094318 macro avg 0.80

23094318