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Track reconstruction is a challenge task
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~O(104) particles per collision event 
at HL-LHC  
→ ~O(105) hits in ATLAS ITK



Time
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A more efficient tracking algorithm is needed
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Traditional algorithm: 
Combinatorial Kalman Filter (CKF) ML-based algorithms

Using graph techniques for tracking is a natural choice
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Events as graphs
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Hits as nodes
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Nodes connected by edges
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Nodes connected by edges
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Nodes connected by edges
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How are the nodes connected?
O(105) hits  
→ O(1010) edges in a fully connected graph



Nodes connected by edges
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How are the nodes connected?

Build graph in a smarter way: 
Only relevant nodes (i.e. nodes from 
the same particles) are connected

O(105) hits  
→ O(1010) edges in a fully connected graph



Nodes connected by edges
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Metric learning by ExaTrkX: 
arXiv: 2103.06995 

Module map: 
arXiv: 2103.00916

How are the nodes connected?

Build graph in a smarter way: 
Only relevant nodes (i.e. nodes from 
the same particles) are connected

Graph built with metric learning 
or module map

O(105) hits  
→ O(1010) edges in a fully connected graph

https://arxiv.org/abs/2103.06995
https://arxiv.org/abs/2103.00916


Message passing through event graph structure
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Message passing through event graph structure
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Message passing through event graph structure
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Message passing through event graph structure
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agg ∋ {sum, mean, max…} 
^ weighted sum (attention)



Message passing through event graph structure
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Node update:
nk+1

0 = fn(nk
o, agg(ek

0j))
Edge update:

ek+1
01 = fe(ek

o1, nk
0, nk

1)

Able to learn key node / edge features from environment

agg ∋ {sum, mean, max…} 
^ weighted sum (attention)



Track reconstruction as edge classification
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Message 
passing

Graph 
segmentation

Graph 
(nodes + edges) Edge scores Track labels

Example: ATLAS GNN4ITK pipeline (ATL-SOFT-PROC-2023-047) 
See Daniel’s talk Tomorrow on latest GNN4ITK results

https://cds.cern.ch/record/2882507
https://indico.cern.ch/event/1330797/contributions/5796654/


Track reconstruction as object condensation

17

Clustering

Node embedding

Message 
passing

Graph 
(nodes + edges) Track labels

Examples: K. Lieret et. al. (arXiv:2312.03823), D. Murnane (influencer) 
See Kilian’s earlier talk

E.g. k-mean, DBSCAN, 
HDBSCAN…

https://arxiv.org/abs/2312.03823
https://indico.cern.ch/event/1252748/contributions/5520692/attachments/2730952/474
https://indico.cern.ch/event/1330797/contributions/5796857/


Graph reconstruction required as a first step in pipeline
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Graph reconstruction required as a first step in pipeline
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Graph reconstruction required as a first step in pipeline
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the graph quality (true edge efficiency & purity)



Graph reconstruction required as a first step in pipeline
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Effectiveness of message passing affected by 
the graph quality (true edge efficiency & purity)

Skip the graph construction?



Message passing, graph construction, all at once
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Message passing, graph construction, all at once
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Message passing, graph construction, all at once
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Message passing, graph construction, all at once
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Build graph on the fly before 

each message passing

Recursive graph attention with 
dynamically built graph

DBSCAN 
(Density-Based Spatial Clustering of Applications with Noise)



Recursive Graph Attention Network
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Recursive Graph Attention Network
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Output node 
latent embedding

First iteration: learn 
node embedding with 
deep sets



Recursive Graph Attention Network
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K-nearest-neighbor (KNN):  
Connect each node to its k closest 
nodes in the embedding space



Recursive Graph Attention Network
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Graph attention block consists of 
a series of graph-attention-style 
message passings



Recursive Graph Attention Network
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Training loss function
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L = y d2 + (1 − y) max2(0, m − d)

Attractive loss for positive pair y = 1 
(hits come from the same particle) 

for each pair of nodes (edge):

Repulsive loss for negative pair y = 0 
(hits come from different particles) 

d = Euclidean distance between two hits

Ltot = ∑
esignal

L(esignal) + ∑
erandom

L(erandom) + ∑
eKNN

L(eKNN)

Signal edges (hits 
from same particles)

Random edges 
(randomly select 2 hits)

KNN edges for “hard 
negative mining”



Test case with TrackML dataset
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● Formulated in the Kaggle TrackML challenge (HL-LHC like detector) 
● Each event ~O(104) particles; ~O(105) hits 
● For proof of concept, apply a cut on pT = 1 GeV for all particles 

○ → ~O(104) hits

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_06037.pdf


Edge-wise Performance in KNN Graphs
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Edge-wise Performance in KNN Graphs
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Edge-wise Performance in KNN Graphs
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Performance evaluated on KNN graphs to decouple effect from clustering

Determines the upper bounds of EffKNN and PurKNN

(True positive)(True edges) KNN edges 
(positive edges)

nhits = 6 
Ny=1 = 5 

Eff = 3/5 = 0.6 
Pur = 3/3 = 1.0

E.g.

k = 3



Edge-wise Performance in KNN Graphs
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Performance evaluated on KNN graphs to decouple effect from clustering

Determines the upper bounds of EffKNN and PurKNN

(True positive)(True edges) KNN edges 
(positive edges)

nhits = 6 
Ny=1 = 5 

Eff = 5/5 = 1.0 
Pur = 5/10 = 0.5

E.g.

k = 10



Edge-wise Performance in KNN Graphs (vs k)
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Edge-wise Performance in KNN Graphs (vs k)
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At k=10: 
Eff = 85% (upper bound = 87%) 
Pur = 93% (upper bound = 95%)



DBSCAN and track performance
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Efftrack =
N reco

particles

Nparticles

DBSCAN

Node embedding Track label

A matched track = (>50% hits in this track candidate come from same particle) 

rfake =
Ntracks − N matched

tracks

N reco
particles

rduplicate =
N matched

tracks − N reco
particles

N reco
particles



DBSCAN track performance
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Track performance vs 𝜺 (DBSCAN) Track efficiency vs pT

0.9911

0.0341

0.0009

𝜺 = 0.1



Computing performance
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Computational cost mainly coming 
from graph attention and KNN



Summary
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● Propose a one-shot object-condensation tracking algorithm with recursive 
graph attention 
○ Does not require graph construction as the first step (take point cloud 

as input for message passing) 
○ Achieve excellent track performance in the TrackML test case 

● Future work aims to improve computational cost: main contribution from 
KNN and graph attention



Backups
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Recursive Graph Attention Network
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Density-Based Spatial Clustering of Applications with 
Noise
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Idea: a cluster in data space is a contiguous region of high point density, 
separated from other such clusters by contiguous regions of low point density



Edge-wise Performance in KNN Graphs (vs pT) 
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