
Reconstructing Particle Tracks in One Go
with a Recursive Graph Attention Network

Jay Chan

Lawrence Berkeley National Laboratory

ACAT, Stony Brook NY, March 11, 2024

Track reconstruction is a challenge task

2

Track #1

Track #2

Track #3Track #4

~O(104) particles per collision event
at HL-LHC
→ ~O(105) hits in ATLAS ITK

Time

Number of particles

A more efficient tracking algorithm is needed

3

Traditional algorithm:
Combinatorial Kalman Filter (CKF) ML-based algorithms

Using graph techniques for tracking is a natural choice

104

Time

Number of particles

Events as graphs

4

Hit

Hit

Hit

Hit

Hits as nodes

5

Node #1

Node #2

Node #0

Node #3

Nodes connected by edges

6

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

Nodes connected by edges

7

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

How are the nodes connected?

Nodes connected by edges

8

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

How are the nodes connected?
O(105) hits
→ O(1010) edges in a fully connected graph

Nodes connected by edges

9

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

How are the nodes connected?

Build graph in a smarter way:
Only relevant nodes (i.e. nodes from
the same particles) are connected

O(105) hits
→ O(1010) edges in a fully connected graph

Nodes connected by edges

10

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

Metric learning by ExaTrkX:
arXiv: 2103.06995

Module map:
arXiv: 2103.00916

How are the nodes connected?

Build graph in a smarter way:
Only relevant nodes (i.e. nodes from
the same particles) are connected

Graph built with metric learning
or module map

O(105) hits
→ O(1010) edges in a fully connected graph

https://arxiv.org/abs/2103.06995
https://arxiv.org/abs/2103.00916

Message passing through event graph structure

11

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

Message passing through event graph structure

12

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

Edge update:
ek+1

01 = fe(ek
o1, nk

0, nk
1)

Message passing through event graph structure

13

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

Node update:
nk+1

0 = fn(nk
o, agg(ek

0j))
Edge update:

ek+1
01 = fe(ek

o1, nk
0, nk

1)

Message passing through event graph structure

14

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

Node update:
nk+1

0 = fn(nk
o, agg(ek

0j))
Edge update:

ek+1
01 = fe(ek

o1, nk
0, nk

1)
agg ∋ {sum, mean, max…}
^ weighted sum (attention)

Message passing through event graph structure

15

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

Node update:
nk+1

0 = fn(nk
o, agg(ek

0j))
Edge update:

ek+1
01 = fe(ek

o1, nk
0, nk

1)

Able to learn key node / edge features from environment

agg ∋ {sum, mean, max…}
^ weighted sum (attention)

Track reconstruction as edge classification

16

Message
passing

Graph
segmentation

Graph
(nodes + edges) Edge scores Track labels

Example: ATLAS GNN4ITK pipeline (ATL-SOFT-PROC-2023-047)
See Daniel’s talk Tomorrow on latest GNN4ITK results

https://cds.cern.ch/record/2882507
https://indico.cern.ch/event/1330797/contributions/5796654/

Track reconstruction as object condensation

17

Clustering

Node embedding

Message
passing

Graph
(nodes + edges) Track labels

Examples: K. Lieret et. al. (arXiv:2312.03823), D. Murnane (influencer)
See Kilian’s earlier talk

E.g. k-mean, DBSCAN,
HDBSCAN…

https://arxiv.org/abs/2312.03823
https://indico.cern.ch/event/1252748/contributions/5520692/attachments/2730952/474
https://indico.cern.ch/event/1330797/contributions/5796857/

Graph reconstruction required as a first step in pipeline

18

Mes
sa

ge

pa
ss

ing

Message
passing

Graph
Segmentation

ClusteringGraph

Graph reconstruction required as a first step in pipeline

19

Graph
construction

Mes
sa

ge

pa
ss

ing

Message
passing

Graph
Segmentation

ClusteringPoint cloud Graph

Graph reconstruction required as a first step in pipeline

20

Graph
construction

Mes
sa

ge

pa
ss

ing

Message
passing

Graph
Segmentation

ClusteringPoint cloud Graph

Effectiveness of message passing affected by
the graph quality (true edge efficiency & purity)

Graph reconstruction required as a first step in pipeline

21

Graph
construction

Mes
sa

ge

pa
ss

ing

Message
passing

Graph
Segmentation

ClusteringPoint cloud Graph

Effectiveness of message passing affected by
the graph quality (true edge efficiency & purity)

Skip the graph construction?

Message passing, graph construction, all at once

22

Mes
sa

ge

pa
ss

ing

Graph
Segmentation

ClusteringPoint cloud

Message passing, graph construction, all at once

23

Mes
sa

ge

pa
ss

ing

Graph
Segmentation

ClusteringPoint cloud

Build graph on the fly before

each message passing

Message passing, graph construction, all at once

24

Mes
sa

ge

pa
ss

ing

Graph
Segmentation

ClusteringPoint cloud

Build graph on the fly before

each message passing

Recursive graph attention with
dynamically built graph

Message passing, graph construction, all at once

25

Mes
sa

ge

pa
ss

ing

Graph
Segmentation

ClusteringPoint cloud

Build graph on the fly before

each message passing

Recursive graph attention with
dynamically built graph

DBSCAN
(Density-Based Spatial Clustering of Applications with Noise)

Recursive Graph Attention Network

26

MLP

Graph Attention Block

MLP

MLP

KNN

Input node
features

Output node
latent embedding

Recursive Graph Attention Network

27

MLP

Graph Attention Block

MLP

MLP

KNN

Input node
features

Output node
latent embedding

First iteration: learn
node embedding with
deep sets

Recursive Graph Attention Network

28

MLP

Graph Attention Block

MLP

MLP

KNN

Input node
features

Output node
latent embedding

Evolutional
KNN graph

K-nearest-neighbor (KNN):
Connect each node to its k closest
nodes in the embedding space

Recursive Graph Attention Network

29

MLP

Graph Attention Block

MLP

MLP

KNN

Input node
features

Output node
latent embedding

Graph attention block consists of
a series of graph-attention-style
message passings

Recursive Graph Attention Network

30

MLP

Graph Attention Block

MLP

MLP

KNN

Input node
features

Output node
latent embedding

Evolutional
KNN graph

Update embedding

Update graph

Training loss function

31

L = y d2 + (1 − y) max2(0, m − d)

Attractive loss for positive pair y = 1
(hits come from the same particle)

for each pair of nodes (edge):

Repulsive loss for negative pair y = 0
(hits come from different particles)

d = Euclidean distance between two hits

Ltot = ∑
esignal

L(esignal) + ∑
erandom

L(erandom) + ∑
eKNN

L(eKNN)

Signal edges (hits
from same particles)

Random edges
(randomly select 2 hits)

KNN edges for “hard
negative mining”

Test case with TrackML dataset

32

● Formulated in the Kaggle TrackML challenge (HL-LHC like detector)
● Each event ~O(104) particles; ~O(105) hits
● For proof of concept, apply a cut on pT = 1 GeV for all particles

○ → ~O(104) hits

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_06037.pdf

Edge-wise Performance in KNN Graphs

33

EffKNN =
N y=1

KNN

N y=1

PurKNN =
N y=1

KNN

NKNN
=

N y=1
KNN

Nhits ⋅ k

N y=1
KNN NKNNN y=1

Ny=1
KNN ≤ ∑

nodei

min(k, n i
hits − 1)

Performance evaluated on KNN graphs to decouple effect from clustering

Determines the upper bounds of EffKNN and PurKNN

(True positive)(True edges) KNN edges
(positive edges)

Edge-wise Performance in KNN Graphs

34

EffKNN =
N y=1

KNN

N y=1

PurKNN =
N y=1

KNN

NKNN
=

N y=1
KNN

Nhits ⋅ k

N y=1
KNN NKNNN y=1

Ny=1
KNN ≤ ∑

nodei

min(k, n i
hits − 1)

Performance evaluated on KNN graphs to decouple effect from clustering

Determines the upper bounds of EffKNN and PurKNN

(True positive)(True edges) KNN edges
(positive edges)

nhits = 6
Ny=1 = 5

E.g.

Edge-wise Performance in KNN Graphs

35

EffKNN =
N y=1

KNN

N y=1

PurKNN =
N y=1

KNN

NKNN
=

N y=1
KNN

Nhits ⋅ k

N y=1
KNN NKNNN y=1

Ny=1
KNN ≤ ∑

nodei

min(k, n i
hits − 1)

Performance evaluated on KNN graphs to decouple effect from clustering

Determines the upper bounds of EffKNN and PurKNN

(True positive)(True edges) KNN edges
(positive edges)

nhits = 6
Ny=1 = 5

Eff = 3/5 = 0.6
Pur = 3/3 = 1.0

E.g.

k = 3

Edge-wise Performance in KNN Graphs

36

EffKNN =
N y=1

KNN

N y=1

PurKNN =
N y=1

KNN

NKNN
=

N y=1
KNN

Nhits ⋅ k

N y=1
KNN NKNNN y=1

Ny=1
KNN ≤ ∑

nodei

min(k, n i
hits − 1)

Performance evaluated on KNN graphs to decouple effect from clustering

Determines the upper bounds of EffKNN and PurKNN

(True positive)(True edges) KNN edges
(positive edges)

nhits = 6
Ny=1 = 5

Eff = 5/5 = 1.0
Pur = 5/10 = 0.5

E.g.

k = 10

Edge-wise Performance in KNN Graphs (vs k)

37

→
∑ k

Nhits ⋅ k
= 1

→
∑ (n i

hits − 1)
Nhits ⋅ k

=
Ny=1

Nhits ⋅ k
∝

1
k

→
∑ (n i

hits − 1)

N y=1 = 1

→
∑ k

N y=1 =
Nhits ⋅ k

N y=1 ∝ k

Edge-wise Performance in KNN Graphs (vs k)

38

→
∑ k

Nhits ⋅ k
= 1

→
∑ (n i

hits − 1)
Nhits ⋅ k

=
Ny=1

Nhits ⋅ k
∝

1
k

→
∑ (n i

hits − 1)

N y=1 = 1

→
∑ k

N y=1 =
Nhits ⋅ k

N y=1 ∝ k

At k=10:
Eff = 85% (upper bound = 87%)
Pur = 93% (upper bound = 95%)

DBSCAN and track performance

39

Efftrack =
N reco

particles

Nparticles

DBSCAN

Node embedding Track label

A matched track = (>50% hits in this track candidate come from same particle)

rfake =
Ntracks − N matched

tracks

N reco
particles

rduplicate =
N matched

tracks − N reco
particles

N reco
particles

DBSCAN track performance

40

Track performance vs 𝜺 (DBSCAN) Track efficiency vs pT

0.9911

0.0341

0.0009

𝜺 = 0.1

Computing performance

41

Computational cost mainly coming
from graph attention and KNN

Summary

42

● Propose a one-shot object-condensation tracking algorithm with recursive
graph attention
○ Does not require graph construction as the first step (take point cloud

as input for message passing)
○ Achieve excellent track performance in the TrackML test case

● Future work aims to improve computational cost: main contribution from
KNN and graph attention

Backups

43

Recursive Graph Attention Network

44

MLP

Graph Attention Block

MLP

MLP

KNN

Input node
features

Output node latent
representation

MLP

Softmax

MLP

Sum

Concat

MLP

Density-Based Spatial Clustering of Applications with
Noise

45

Idea: a cluster in data space is a contiguous region of high point density,
separated from other such clusters by contiguous regions of low point density

Edge-wise Performance in KNN Graphs (vs pT)

46

EffKNN PurKNN

