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Analysis pipeline at the LHC
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Particles Analysis Result

Theory • reconstruction both reduces 
dimensionality of the data and 
gives physics interpretable 
representation (particles)

summary statistics

Few parameters

Raw Data

O(100M) 
channels! 
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Reconstruction
Lots of (also ML) components - e.g. tracking, jet tagging (ag)… 

But each optimised separately and downstream components are optimised based on the 
steps prior to it
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Particles Analysis ResultRaw Data

Tracking FTAGFeatures



The optimisation of the sensitivity is primarily the job of the analysis, given a fixed 
reconstruction - mostly common for all analysis 

Particles Analysis ResultReconstructionRaw Data

Analysis optimisation
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S/BFrozen
Optimize

Is this the best way to do it? 

• a fixed reco loses some information irrevocably 

• maybe should rather have a specific reco for every analysis?



Particles Analysis ResultReconstructionRaw Data

Features Head ResultFoundation modelRaw Data
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Pre-trained on a large dataset

Reconstruction  Foundation model=

fine-tuned on small labeled dataset
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• ML and HEP setups are fortunately very aligned 

• But everything is differentiable so can be fine-tuned w/ gradient descent



Particles Analysis ResultReconstructionRaw Data

Features Head ResultFoundation modelRaw Data
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Pre-trained on a large dataset

Reconstruction  Foundation model=

fine-tuned on small labeled dataset

Q: Could this Finetuning workflow also work in HEP?
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• ML and HEP setups are fortunately very aligned 

• But everything is differentiable so can be fine-tuned w/ gradient descent

Key difference: reconstruction is mostly common and Frozen for each downstream task 
(analysis)



A toy end-to-end Analysis
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[1] 
Final state with Higgs/

QCD Jets

X → HH → bb̄bb̄

Jet representation

Jet representation

Jet representation

Jet representation

Jet constituents

[1]: Duarte Javier, CMS open data [ http://opendata.cern.ch/record/12102 ]

Analysis Result

Jet representation

S/B

http://opendata.cern.ch/record/12102


Transformer 
(ParT)[2]

A toy end-to-end Analysis
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[1] 
Final state with Higgs/

QCD Jets

X → HH → bb̄bb̄

Jet representation

Jet representation

Jet representation

Jet representationXbb

Backbone FM

Jet constituents
Xbb flavour tagging 

(supervised)

[2]: Huilin Qu, Congqiao Li, and Sitian Qian, “Particle Transformer for Jet Tagging,” (2022), arXiv:2202.03772  
[1]: Duarte Javier, CMS open data [ http://opendata.cern.ch/record/12102 ]

Jet representation

http://opendata.cern.ch/record/12102


Backbone Jet representation

Q: Do high-dim 
embeddings hold more 
(useful) info than 
Xbb+HL Features?

Analysis would typically use frozen Xbb + HL Features (jet 4-momenta)
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DeepSets

Analysis head
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Jet representation

Jet representation

Jet representation

The head is trained for S/B discrimination with Jet representations 
from backbone as inputs 
Variable number of jets per event + Permutation Invariance -> DeepSets

S/B

ResultQ: Does fine-tuning the jet 
representation help?



DeepSetsTransformer

Frozen workflow
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Backbone trained on Xbb task and then frozen 
DeepSets + binary classification trained on S/B

Xbb S/B

Result

Train and freeze

Jet representation

Jet representation

Jet representation



DeepSetsTransformer

Fine-tuned workflow
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Backbone pre-trained on Xbb task 
Then fine-tuned (end-to-end) on S/B

Both S/B

Result

Jet representation

Jet representation

Jet representation



DeepSetsTransformer

From scratch training
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No backbone pre-training 
Backbone + head trained from scratch on S/B

S/BS/B

Result

Jet representation

Jet representation

Jet representation



Architecture autonomy
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Scalar + HL Vector + HL Vector

Standard HEP

Inductive Bias 
 is all you need

ML-assisted HEP

Hope for sufficient 
stat

‘Hits to Higgs’

Frozen

Fine-tuned

From scratch



Results
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Well-known patterns from ML 
seem to hold also in HEP

Standard HEP
Large data-
efficiency 
gains!

[3]: Huilin Qu, Congqiao Li, and Sitian Qian, “JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics,” (2022). 

Backbone (pre-)trained 
on 22M jets

• Fine-tuning workflow improves 
both performance & data 
efficiency (10-100x wrt standard 
hep)  

• Domain adaptation: Pre-
training on a different dataset 
(JetClass[3]) helps 

https://zenodo.org/records/6619768


Results
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Well-known patterns from ML 
seem to hold also in HEP

• Fine-tuning workflow improves 
both performance & data 
efficiency (10-100x wrt standard 
hep)  

• High-dim embeddings also seem 
to be useful in the frozen case

• Domain adaptation: Pre-
training on a different dataset 
(JetClass[3]) helps 

[3]: Huilin Qu, Congqiao Li, and Sitian Qian, “JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics,” (2022). 

https://zenodo.org/records/6619768


Conclusions
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1) Fine-tuning workflow for end to end analysis works and is useful even for simple examples  

Compared to standard HEP approach: 

• 2x in background rejection, 10-100x in data efficiency 

• There might be more to gain in more complex topologies

Thank You!

Link to the paper: arXiv:2401.13536

2) Key question now: what’s the best pre-training (e.g. supervised or self-supervised)?  

SSL approaches are also being explored:  

• e.g. “Masked Particle Modeling”, yesterday, today, and tomorrow talks  

• self-supervised training doesn’t need labels: can pre-train on real data!  

• Huge amount of pre-training possible

3) …and calibration

https://arxiv.org/abs/2401.13536
https://arxiv.org/pdf/2401.13537.pdf
https://indico.cern.ch/event/1330797/sessions/530857/#20240311
https://indico.cern.ch/event/1330797/sessions/530857/#20240312
https://indico.cern.ch/event/1330797/sessions/530857/#20240313


Backup
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From scratch training eventually surpasses frozen models, it’s just slow
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From scratch training eventually surpasses frozen models, it’s just slow
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Xbb is learned when 
solving the downstream 
task even without 
actual jet labels
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High dim embeddings help for frozen jet representations 
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Dimensionality becomes less important when training end-to-end



Setup: CMS open data and ParT
Jets are clustered using the anti-
kT algorithm with R=0.8 from 
particle flow (PF) candidates 

Constituents features: 

• up to 100 PF per jet 

• 17 features per PF 

High-level features: 

• Jet 4-momenta 

• Xbb scores from ParT

Particle transformer for FTAG [arXiv:2202.03772]
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Training: QCD vs Higgs jets 

10M events / 22M jets 

CMS open data: Duarte Javier, [ http://opendata.cern.ch/record/12102 ]

http://opendata.cern.ch/record/12102


ParT
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[arXiv:2202.03772]



CMS open data
• CMS simulated dataset: 

• Sample with jet, track and 
secondary vertex properties 
for H(bb) tagging (http://
opendata.cern.ch/record/
12102) 

• meant for jet tagging, up to 
100 pf cand per jet - 17 feats 
each  

• signal samples: 11 mass points 
- M_x from 600 GeV to 4500 
GeV, bkg: QCD multijet 

• ’fat jets’ () 4-momenta and 
(old) Xbb score
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10M events / 22M jets 

[ http://cms-results.web.cern.ch/cms-results/public-results/publications/BTV-16-002/ ]

http://cms-results.web.cern.ch/cms-results/public-results/publications/BTV-16-002/

