Finetuning Foundation Models for joint Analysis Optimization

arXiv:2401.13536

Lukas Heinrich, Nicole Hartman, <u>Matthias Vial</u>

ACAT 2024, Stony Brook University, Stony Brook, Long Island NY, USA - 12 Mar 2024

MAX-PLANCK-INSTITUT FÜR PHYSIK

Analysis pipeline at the LHC

$$\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i \overline{\psi} \overline{\psi} \psi + h.c. \\ &+ \overline{\psi} i \overline{y} i j \psi \phi + h.c. \\ &+ \overline{\psi} i \overline{y} i j \psi \phi + h.c. \end{aligned}$$

Raw Data

O(100M)channels!

• *reconstruction* both reduces dimensionality of the data and gives physics interpretable representation (particles)

Lukas Heinrich, Nicole Hartman, Matthias Vigl

Lots of (also ML) components - e.g. tracking, jet tagging (ftag)... steps prior to it

Analysis optimisation

reconstruction - mostly common for all analysis

Is this the best way to do it?

The optimisation of the sensitivity is primarily the job of the **analysis**, given a fixed

Reconstruction = Foundation model

- ML and HEP setups are fortunately very aligned
- But everything is differentiable so can be fine-tuned w/ gradient descent

Reconstruction = Foundation model

- ML and HEP setups are fortunately very aligned
- But everything is differentiable so can be fine-tuned w/ gradient descent

Key difference: reconstruction is mostly common and Frozen for each downstream task (analysis) Q: Could this Finetuning workflow also work in HEP?

A toy end-to-end Analysis

g

g

$X \to HH \to b\bar{b}b\bar{b}^{[1]}$ Final state with Higgs/ QCD Jets

[1]: Duarte Javier, CMS open data [<u>http://opendata.cern.ch/record/12102</u>]

A toy end-to-end Analysis

$X \to HH \to b\bar{b}b\bar{b}^{[1]}$ Final state with Higgs/ QCD Jets

[2]: Huilin Qu, Congqiao Li, and Sitian Qian, "Particle Transformer for Jet Tagging," (2022), arXiv:2202.03772 [1]: Duarte Javier, CMS open data [<u>http://opendata.cern.ch/record/12102</u>]

lepton

Backbone Jet representation

Q: Do high-dim embeddings hold more (useful) info than **Xbb+HL Features?**

The head is trained for S/B discrimination with Jet representations from backbone as inputs Variable number of jets per event + Permutation Invariance -> DeepSets

Q: Does fine-tuning the jet representation help?

Analysis head

Frozen workflow

Backbone trained on **Xbb** task and then frozen DeepSets + binary classification trained on S/B

Fine-tuned workflow

Backbone pre-trained on Xbb task Then fine-tuned (end-to-end) on S/B

From scratch training

No backbone pre-training Backbone + head trained from scratch on S/B

Well-known patterns from ML seem to hold also in HEP

• Fine-tuning workflow improves both performance & data efficiency (10-100x wrt standard hep)

tio

Ra

Domain adaptation: Pre-training on a different dataset (JetClass^[3]) helps

[3]: Huilin Qu, Congqiao Li, and Sitian Qian, "JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics," (2022). 15

Well-known patterns from ML seem to hold also in HEP

- Fine-tuning workflow improves both performance & data efficiency (10-100x wrt standard hep)
- High-dim embeddings also seem to be useful in the frozen case
- **Domain adaptation**: Prelacksquaretraining on a different dataset (JetClass^[3]) helps

[3]: Huilin Qu, Congqiao Li, and Sitian Qian, "JetClass: A Large-Scale Dataset for Deep Learning in Jet Physics," (2022). 16

Results

Conclusions

1) Fine-tuning workflow for end to end analysis works and is useful even for simple examples Compared to standard HEP approach:

• 2x in background rejection, 10-100x in data efficiency

• There might be more to gain in more complex topologies 2) Key question now: what's the best pre-training (e.g. supervised or self-supervised)? SSL approaches are also being explored:

- e.g. "Masked Particle Modeling", yesterday, today, and tomorrow talks
- self-supervised training doesn't need labels: can pre-train on real data!
 - Huge amount of pre-training possible

3) ... and calibration

Link to the paper: **arXiv:2401.13536**

Lukas Heinrich, Nicole Hartman, Matthias Vigl

From scratch training eventually surpasses frozen models, it's just slow

From scratch training eventually surpasses frozen models, it's just slow

Xbb is learned when solving the downstream task even without actual jet labels

Lukas Heinrich, Nicole Hartman, Matthias Vigl

High dim embeddings help for frozen jet representations

Dimensionality becomes less important when training end-to-end

Setup: CMS open data and ParT

CMS open data: Duarte Javier, [http://opendata.cern.ch/record/12102]

Jets are clustered using the antikT algorithm with R=0.8 from particle flow (PF) candidates

Constituents features:

- up to 100 PF per jet
- 17 features per PF

High-level features:

- Jet 4-momenta
- Xbb scores from ParT

Particle transformer for FTAG [arXiv:2202.03772] Training: QCD vs Higgs jets

10M events / 22M jets

[arXiv:2202.03772]

(b) Particle Attention Block

ParT

(c) Class Attention Block

- CMS simulated dataset:
- Sample with jet, track and secondary vertex properties for H(bb) tagging (http:// opendata.cern.ch/record/ 12102)
- meant for jet tagging, up to 100 pf cand per jet - 17 feats each
- signal samples: 11 mass points - M_x from 600 GeV to 4500 GeV, bkg: QCD multijet
- 'fat jets' (fj) 4-momenta and (old) Xbb score

[http://cms-results.web.cern.ch/cms-results/public-results/publications/BTV-16-002/]

CMS open data

Primary Vertex

