
Machine learning-based

particle identification of 

atmospheric neutrinos in JUNO
Jiaxi Liu[1], Fanrui Zeng[2], Xinhai He[1], Wing Yan Ma[2], 

Zhen Liu[1], Wuming Luo[1], Hongye Duyang[2], Teng Li[2]

[1] Institute of High Energy Physics, CAS

[2] Shandong University 

2024.03, ACAT 2024



➢ Main physics goal: determine the neutrino mass ordering (NMO)

➢ Central detector: 20 kton liquid scintillator, with 17,612 20-inch PMTs 

arranged on the sphere facing inward. 

2ACAT 2024Jiaxi Liu, IHEP CAS

JUNO central detector structure
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JUNO central detector under construction

Water Pool

20-inch PMTs

Central Detector
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➢ Besides reactor neutrinos, atmospheric neutrinos could also 

provide independent NMO sensitivity.

➢ Precise particle identification (PID) for atmospheric neutrinos is 

critical, which could be divided into the following steps:

➢ Signal (charged current) VS Background (neutral current)

➢ 𝜈𝜇/ ҧ𝜈𝜇-CC VS 𝜈𝑒/ ҧ𝜈𝑒-CC

➢ 𝝂-CC VS 𝝂-CC

Differences in oscillation probabilities between two 
neutrino mass order (normal order & inverted order) 



θ
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➢ For liquid scintillator detector, The light seen by a PMT is a superposition of scintillation light generated 

at many points on the particle track inside the detector.

➢ The amount of light received by a PMT evolves as a function of time (PMT waveform) depends upon 

track direction, interaction vertex, visible energy, and dE/dx (particle type).

scintillation light from a charged 

particle track reaching each PMT

For a PMT with an angle exactly perpendicular to 

the scintillation-light front, the slope of the rising 

edge of its waveform will be particularly steep.
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➢ For neutral current (NC) events, no charged lepton is produced by the primary interaction;

➢ For charged current (CC) events, the characteristics of all PMT waveforms vary depending on the flavor of the charged 

lepton (μ or e):

𝜈𝜇/ ҧ𝜈𝜇-CC events:

• Charged lepton (𝜇+/𝜇−) deposits energy 

with ionization, leaving a long track in LS;

• The ring of slope is sharp due to muon’s 

straight track.

𝜈𝑒/ ҧ𝜈𝑒-CC events:
• Charged lepton (𝑒+/𝑒−) induces EM shower to 

produce secondary electrons along the track;

• The ring of slope is fainter than 𝜈𝜇/ ҧ𝜈𝜇-CC events 

due to the EM shower and shorter track.
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➢ The charged lepton from primary trigger could provide enough information for 3-labels PID (𝜈𝜇/ ҧ𝜈𝜇-CC VS 𝜈𝑒/ ҧ𝜈𝑒-CC VS NC).

➢ However, for the 𝝂/𝝂 discrimination task, the difference in hadronic energy fraction 𝑌𝑟𝑎𝑡𝑖𝑜 = (𝐸𝜈 − 𝐸𝑙𝑒𝑝)/𝐸𝜈 is fundamental,

which could be reflected by extra information from captured neutrons and Michel-electrons in the secondary triggers:

Michel-electron:

➢ Carries the information of final-state charged 

leptons and pions. 

➢ Provides more capability to 𝜈𝜇/ ҧ𝜈𝜇 discrimination.

➢ Harder to reconstruct comparing to neutron

Captured neutron:

➢ Carries the information of hadronic energy and 

the directionality of hadrons and neutrinos.

➢ Provides more capability to 𝜈𝑒/ ҧ𝜈𝑒 discrimination.

➢ High tagging efficiency, easier to reconstruct

𝑌𝑟𝑎𝑡𝑖𝑜 distribution for each CC flavor
(Figure courtesy of Xinhai He)

Captured neutron multiplicity 

Michel-electron multiplicity 
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➢ Due to the large PMT number distributed on the sphere, directly feeding models with all waveforms is rather hard;

➢ Instead, a few characteristic features that reflect event topology in the detector are extracted from the PMT waveforms:

slope
FHT

Slope

Features extracted from waveforms:

• FHT: First Hit Time 

• Slope: Describes the average slope in the first 4ns.

• Peak charge and peak time: the charge and time of the peak of the waveform

• Charge: The total number of PEs 

Direction

Energy

Flavor

Track

Vertex
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To process the 3-dimensional input of features from PMTs on a sphere, two strategies with different categories of deep learning 

models were employed:

1. Spherical image-based model: DeepSphere

➢ A popular tool processing spherical data originally developed for cosmology studies;

➢ Maintain rotation covariance; 

➢ Avoid distortions caused by projection to a planar surface.

➢ Nside = 32 

➢ Pixels=12 × Nside 2 = 12288 

➢ If more than one PMTs are grouped into 

one pixel, information is merged:

• FHT: the earliest;

• nPE: the sum;

• Slope and other: the average.

Architecture of DeepSphere
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DeepSphere model strategy:

Atm. 𝝂
candidate

Merging features for neutron candidate triggers

Primary

trigger

Secondary

triggers Michel electron & 

neutron selection

Michel e

trigger 1

Michel e

trigger 2

Michel e

trigger 3

neutron

trigger 1

neutron

trigger n

PMT features

(FHT, Slope,…)

PMT feature

(FHT)

PMT feature

(FHT)

PMT feature

(FHT)

Merged PMT features

(FHT, nPE)

Machine 

learning model 

(DeepSphere)

PID label:

𝜈𝜇/𝜈𝜇/𝜈𝑒/𝜈𝑒/𝑁𝐶

Advantages: All features are at the same PMT-level, fast and easy for the ML model to handle the input.
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To process the 3-dimensional input of features from PMTs on a sphere, two strategies with different categories of deep learning 

models were employed:

2.    Point cloud-based model: PointNet++, DGCNN

➢ Directly taking 3D point clouds (𝑁𝑝𝑜𝑖𝑛𝑡𝑠 × [x, y, z, features...]) as input; JUNO signal more resemble point clouds, 

minimize the information loss during projection.

➢ PointNet++: strong capability to handle complex point clouds with set abstraction, used for PMT-level features.

➢ DGCNN: edge-based model with better performance for sparse point clouds, used for reconstructed neutron features.

Architecture of PointNet++ Architecture of DGCNN



PID label:

𝜈𝜇/𝜈𝜇/𝜈𝑒/𝜈𝑒/𝑁𝐶
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PointNet++ & DGCNN models strategy:

Atm. 𝝂
candidate

Primary

trigger

Secondary

triggers
Michel e

trigger 1

Michel e

trigger 2

Michel e

trigger 3

neutron

trigger 1

neutron

trigger n

PMT features

(FHT, Slope,…)

PMT feature

(FHT)

PMT feature

(FHT)

PMT feature

(FHT)

Reconstructed neutron

Point cloud
(𝑁𝑛 × [x, y, z])

Machine 

learning model 

(PointNet++)

Advantages: An individual model is applied to extract features from the reconstructed neutron information.

PMT point cloud

(𝑁𝑝𝑚𝑡 × [x, y, z,

features])

Machine 

learning model 

(DGCNN)

FC layer
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(Treat 𝜈𝑒 as signal, തνe as background)
Take 𝝂𝒆/ഥ𝝂𝒆 discrimination as example: Background efficiency : 

𝐷

𝐶+𝐷
Signal efficiency : 

𝐴

𝐴+𝐵

➢ Efficiency and purity can be easily tuned with the cut on score. 

➢ Therefore, the Area Under the ROC Curve (AUC) is used to evaluate the capability of classification task.

Advantages of using AUC to measure model performance:

➢ AUC does not depend on the choice of score cut;
➢ AUC is not affected by the imbalance of samples in each class.
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𝝂𝝁/ഥ𝝂𝝁𝝂𝒆/ഥ𝝂𝒆

➢ All the results were obtained from one same 

Monte Carlo simulation sample.

➢ The energy dependences of AUC are mostly 

consistent for the two strategies.

3-labels PID (𝜈𝜇/ ҧ𝜈𝜇-CC VS 𝜈𝑒/ ҧ𝜈𝑒-CC VS NC): 2-labels PID (𝜈/ ҧ𝜈 discrimination):

Total AUC for 3-labels PID

➢ AUC is only applicable for binary classification scenarios;

➢ For 3-label PID, it is possible to calculate the AUC for each label 

individually and take the average to obtain the overall AUC of the model.

𝜈𝜇/ ҧ𝜈𝜇-CC 

𝜈𝑒/ ҧ𝜈𝑒-CC

NC

Work in Progress

Work in Progress

Work in Progress

Work in Progress

Work in Progress Work in Progress
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𝜈𝜇-like 𝜈𝜇-like

𝜈𝑒-like 𝜈𝑒-like

➢ For the upcoming NMO study, the efficiency and purity for each label will be tuned to obtain the best sensitivity.

➢ An example of the background composition for each CC-like label after tuning:

Upward-going events only, 𝐸𝑣𝑖𝑠>0.5 GeV
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➢ In this talk, a general machine learning approach of atmospheric neutrino particle identification was 

introduced, which could be extended to other large homogeneous liquid scintillator detectors as well.

➢ two individual PID strategies with different types of machine learning models were developed to cross 

validate the method.

➢ Preliminary results (AUC) based on Monte Carlo simulations show promising potential for this approach.

➢ The final performance of atmospheric neutrino (efficiency & purity) will be tuned to obtain the best NMO 

sensitivity in JUNO.
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ArXiv: 2012.15000

DeepSphere: Graph-CNN for Spherical Data

https://arxiv.org/pdf/2012.15000v1.pdf
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PointNet & PointNet++
PointNet: arXiv:1612.00593
PointNet++: arXiv:1706.02413

https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1706.02413
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ArXiv: 1801.07829

DGCNN: Dynamic Graph CNN

• Based on PointNet and PointNet++, could capture local geometrical structure 
• Calculate the nearest k points for each point, extract features from edges 
• Dynamic: Re-calculate the k-nn graph for each layer, and classify points with similar semantic information

Nearest points for the red point: 
Euclidean distance → semantic distance


