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lJiangmen Underground Neutrino Observatory (JUNO)

» Main physics goal: determine the neutrino mass ordering (NMO)
» Central detector: 20 kton liquid scintillator, with 17,612 20-inch PMTs

arranged on the sphere facing inward.
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l Motivation

> Besides reactor neutrinos, atmospheric neutrinos could also

AS,

provide independent NMO sensitivity.
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» Precise particle identification (PID) for atmospheric neutrinos is

critical, which could be divided into the following steps:

» Signal (charged current) VS Background (neutral current)
> v,/v,-CCVSv,/v,-CC
» v-CCVSv-CC
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I Methodology

» For liquid scintillator detector, The light seen by a PMT is a superposition of scintillation light generated

at many points on the particle track inside the detector.

» The amount of light received by a PMT evolves as a function of time (PMT waveform) depends upon

track direction, interaction vertex, visible energy, and dE/dx (particle type).
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scintillation light from a charged edge of its waveform will be particularly steep.

particle track reaching each PMT
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I Methodology

» For neutral current (NC) events, no charged lepton is produced by the primary interaction;
» For charged current (CC) events, the characteristics of all PMT waveforms vary depending on the flavor of the charged

lepton (u or e):
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l Methodology

> The charged lepton from primary trigger could provide enough information for 3-labels PID (v, /v,-CC VS v, /v,-CC VS NC).

» However, for the v/v discrimination task, the difference in hadronic energy fraction Y,.,;;, = (E), — Ejep)/E,, Is fundamental,

which could be reflected by extra information from captured neutrons and Michel-electrons in the secondary triggers:
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I A multi-purpose Machine Learning Solution

» Due to the large PMT number distributed on the sphere, directly feeding models with all waveforms is rather hard;

» Instead, a few characteristic features that reflect event topology in the detector are extracted from the PMT waveforms:
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Features extracted from waveforms:
* FHT: First Hit Time
. Describes the average slope in the first 4ns.
« Peak charge and peak time: the charge and time of the peak of the waveform
« Charge: The total number of PEs
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I Machine Learning Models & Strategies

To process the 3-dimensional input of features from PMTs on a sphere, two strategies with different categories of deep learning

models were employed: =
1. Spherical image-based model: DeepSphere

» A popular tool processing spherical data originally developed for cosmology studies;

» Maintain rotation covariance;

» Avoid distortions caused by projection to a planar surface.

Input channels

ChebConv Layer x2

ChebConv Layer R > NSide - 32
o y > Pixels=12 x Nside 2= 12288
» If more than one PMTs are grouped into
one pixel, information is merged:
* FHT: the earliest;
* nPE: the sum;
« Slope and other: the average.

Max pooling
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Architecture of DeepSphere
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I Machine Learning Models & Strategies

DeepSphere model strategy:
Atm. v Primary ) [ PMT features | ~
candidate trigger ) \ (FHT, Slope,...)

:(Secondary\ . I [ Michele ) [ PMT feature

\ 4

\_ triggers ) wmichel electron & | | trigger 1] L (FHT) )
neutron selection .
[ Michele | [ PMT feature | -
trigger 2 > Machine PID label:
M99 J L (FHT) ) ¢ |learning model p—> Vo [T/ Ve Ve NC
[ Michele ) ( PMT feature | (DeepSphere)
| trigger 3 | L (FHT) )
( neutron )
i trigger 1 ». IMerged PMT features
1 FHT, nPE
(
=
neutron
Merging features for neutron candidate triggers \ triggern |

Advantages: All features are at the same PMT-level, fast and easy for the ML model to handle the input.
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I Machine Learning Models & Strategies

To process the 3-dimensional input of features from PMTs on a sphere, two strategies with different categories of deep learning
models were employed:
2. Point cloud-based model: PointNet++, DGCNN
> Directly taking 3D point clouds (Npeints * [X, Y, Z, features...]) as input; JUNO signal more resemble point clouds,
minimize the information loss during projection.
» PointNet++: strong capability to handle complex point clouds with set abstraction, used for PMT-level features.

» DGCNN: edge-based model with better performance for sparse point clouds, used for reconstructed neutron features.

Hierarchical point set feature learning
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I Machine Learning Models & Strategies

PointNet++ & DGCNN models strategy:

Atm. v Primary | [ PMT features |7
candidate trigger | | (FHT, Slope,...)
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Advantages: An individual model is applied to extract features from the reconstructed neutron information.
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I Results
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Take v, /v, discrimination as example: Signal efficiency : = Background efficiency : —
(Treat v, as signal, Ve as background)
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» Efficiency and purity can be easily tuned with the cut on score.

» Therefore, the Area Under the ROC Curve (AUC) is used to evaluate the capability of classification task.

Advantages of using AUC to measure model performance:
» AUC does not depend on the choice of score cut;
» AUC is not affected by the imbalance of samples in each class.
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I Results

3-labels PID (v, /v,-CC VS v, /v,-CC VS NC): 2-labels PID (v/v discrimination):
ul Vu el Ve
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E P % E o -
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, NCoE | | > All the results were obtained from one same
| o Work in Progress ! ] )
: ] Monte Carlo simulation sample.
L . | > The energy dependences of AUC are mostly

> AUC is only applicable for binary classification scenarios; consistent for the two strategies.

» For 3-label PID, it is possible to calculate the AUC for each label
individually and take the average to obtain the overall AUC of the model.
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I Results

» For the upcoming NMO study, the efficiency and purity for each label will be tuned to obtain the best sensitivity.
» An example of the background composition for each CC-like label after tuning:
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I Summary

» In this talk, a general machine learning approach of atmospheric neutrino particle identification was
introduced, which could be extended to other large homogeneous liquid scintillator detectors as well.

» two individual PID strategies with different types of machine learning models were developed to cross
validate the method.

» Preliminary results (AUC) based on Monte Carlo simulations show promising potential for this approach.

» The final performance of atmospheric neutrino (efficiency & purity) will be tuned to obtain the best NMO
sensitivity in JUNO.

THANKS!

Jiaxi Liu, IHEP CAS ACAT 2024 16



I Backups
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ArXiv: 2012.15000

I DeepSphere: Graph-CNN for Spherical Data

Use healpix sampling to define vertices
Equally divide the sphere into 12 parts
Further divide each part into Ng4e parts (Ngige=2").
Total number of pixels is 12X2n

If more than one PMTs are in one pixel, info is merged
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https://arxiv.org/pdf/2012.15000v1.pdf

PointNet & PointNet++

Classification Network
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Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then
aggregates point features by max pooling. The output is classification scores for k classes. The segmentation network is an extension to the
classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers
in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.
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Figure 2: Ilustration of our hierarchical feature learning architecture and its application for set
segmentation and classification using points in 2D Euclidean space as an example. Single scale point
grouping is visualized here. For details on density adaptive grouping, see Fig. 3
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PointNet: arXiv:1612.00593
PointNet++: arXiv:1706.02413

l PointNet
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#params | FLOPs/sample
PointNet (vanilla) | 0.8M 148M

PointNet 3.5M 440M
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https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1706.02413

I DGCNN: Dynamic Graph CNN

ArXiv: 1801.07829

* Based on PointNet and PointNet++, could capture local geometrical structure
* Calculate the nearest k points for each point, extract features from edges
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Fig. 2. Left: Computing an edge feature, e;; (top), from a point pair, x; and x; (bottom). In this example, hg() is instantiated using a fully connected layer,
and the learnable parameters are its associated weights. Right: The EdgeConv operation. The output of EdgeConv is calculated by aggregating the edge
features associated with all the edges emanating from each connected vertex.
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Dynamic: Re-calculate the k-nn graph for each layer, and classify points with similar semantic information




