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Self-Supervised Learning in High Energy Physics

e Supervised learning: using labeled data to find a hidden representation h(xjet),
tailored to a specific task

e Alternative: leverage unlabeled data to find a representation h(xjet) useful for multiple tasks
= self-supervised learning: identify the important parts of the data, i.e. lossy compression

e One approach: pick pairs of jets incorporating the same physics of interest
and require their representations to be close by

= How to motivate notions of “sameness” ?

" Related work: Symmetries, Safety, and Self-Supervision, Dillon et al. (2022) 2



https://scipost.org/preprints/scipost_202108_00046v2/

Markov Process and Self-Supervised Learning

Simulation chain, Markov process:
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= Various natural definitions of sameness of jets, set by a choice of step in the simulation chain 3



Different notions of Sameness

e Creation of pairs of “same” jets by running the
simulation chain twice beyond a certain step ~
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Different notions of Sameness

e Creation of pairs of “same” jets by running the
simulation chain twice beyond a certain step ~

e One approach: rerun the parton shower

= simplistic choice, e.g. risk of declaring 75
2 jets from a hard splitting as 1 jet

" Related work: Symmetries, Safety. and Self-Supervision, Dillon et al. (2022)



https://scipost.org/preprints/scipost_202108_00046v2/

Different notions of Sameness

e Creation of pairs of “same” jets by running the
simulation chain twice beyond a certain step ~

e One approach: rerun the parton shower
= simplistic choice, e.g. risk of declaring
2 jets from a hard splitting as 1 jet

e (o deeper: rerun the simulation chain after some
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o Talk by P. Harris yesterday
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Different notions of Sameness

e Creation of pairs of “same” jets by running the
simulation chain twice beyond a certain step ~

e One approach: rerun the parton shower
= simplistic choice, e.g. risk of declaring
2 jets from a hard splitting as 1 jet

e Go deeper: rerun the simulation chain after some "5 ] ﬁ ;?ﬁ

parton splittings | \
o Talk by P. Harris yesterday tracks tracks

e Don't go too deep: using the same particle-level jet twice S =
gives the same tracks = collapse of the representation

q ’
e Approach in the following: frozen parton shower,

only run hadronisation and detector simulation twice
" Related work: Symmetries, Safety. and Self-Supervision, Dillon et al. (2022)
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Event Simulation Chain

MadGraph

Parton Shower 89 X
, S AN
Pythia, Detector Simulation

Hadronisation (Geant4) Detector tracks and cells
of jets, graph format

e Generation of jet events
o Hard scattering: di-quark and di-gluon final states
o Jet p. approx. 100 GeV
o Training statistics approx. 10° events

e Frozen shower approach
e Extract jets: anti-k, algorithm, R = 0.4



Detector Simulation
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Complicated experimental signatures of jets
= benefit from a detailed detector simulation:
Cocoa, using Geant4

Charged particle tracker + electromagnetic
and hadronic calorimeters

Single particle calorimeter responses
tuned to the ATLAS detector performance
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https://github.com/cocoa-hep/cocoa-hep/

Jet tracks and cells as graphs
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Large variety in jet pairs due to randomness in hadronisation and detector response

= non-trivial learning task
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Learning Strategy

e SSL backbone: Graph neural network
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MLP Node (cell, track) blocks node (cell, tracks)
\ representation representation
Cat — —
Updated track , )
Track features representation > <’
MLP
- - Z
—>DO > MLP > 4,
Global

representation a

e Loss function: SICLR
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Learned Representations
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Reasonable distribution of jets Learned to distinguish jets by their

in representation space underlying parton showers!
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Energy Regression
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e Downstream task:

e Comparing with a fully supervised training result, same network
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Quark / Gluon Tagging

Quark jets
Gluon jets
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e Clustering in representation space, Frozen SSL backbone + prediction head,
SSL + kNN classifier: 73 % accurac compared with fully supervised classifier
P y sup
e Fully supervised classifier: 78 % accuracy
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Conclusion

e Built a foundation model of jets using self-supervised, contrastive learning

o Various ways to define sameness of jets, here: frozen parton shower

e Results translate to LHC physics
o Realistic detector simulation

o Graph neural network
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