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The JUNO Experiment

* The Jiangmen Underground Neutrino Observatory (JUNO)
IS @ multi-purpose experiment currently under construction
in southern China

e 20 kton liquid scintillator in a spherical vessel
surrounded by ~17k 20” + ~25k 3” PMTs

* Primary goal is to measure neutrino mass ordering (NMO)

* Main sensitivity from reactor neutrinos

» Pure source of electron anti-neutrino (v,) of ~1-10 MeV

» Measure deficitin v,
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Cosmic

Atmospheric Neutrinos

» Large flux of atmospheric neutrinos (v ., ) produced by cosmic
ray interactions

Isotropic with different baseline (L) and energy (E)

* Natural source of neutrinos in GeV region
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Motivation
 Oscillation sensitivities can be enhanced by studying v, :,5;
oscillations in GeV region

» Jostudy v, oscillations one needs to reconstruct neutrinos’
direction/energy/flavor (particle type)

* Also important to reconstruct cosmic muons - background to
main signal

* A novel, multi-purpose reconstruction method based on
Machine Learning
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Scintillation light at the detector

e Light seen by PMTs of an LS detector is a superposition of light
generated from many points along the track

* Shape of light curve received by each PMT depends on :

» Angle w.r.t. track direction &

* [rack starting and stopping position
* Particle type - different dE/dx

* Typical LS detectors are designed for low-energy neutrinos -

v, oscillations measurements using LS detectors has
never been performed
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Methodology

* Due to large number of PMTs in the JUNO detector, directly feeding full waveform
from all PMTs are computationally expensive

e Features that reflects the waveforms are extracted to reduce the data volume
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Feature Extraction J—
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Planar Model: EfficientNetV2

« PMTs are seen as pixels, with each feature
projected from the sphere to the planar surface

o EfficientNetV2: superior performance and shorter
training time compared to other popular CNNs

* E.g. projected total charge and FHT to
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Spherical CNN: DeepSphere

 Graph-CNN: developed for processing spherical data
originally developed for cosmology studies

e Maintain rotation covariance

* Avoid distortions caused by projection to a planar surface
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3D point-cloud: PointNet++

» Directly taking 3D point clouds (N(PMT) X [x, vy, z, features...]) as inputs

* Detector signal more resemble point clouds

 Minimise information loss during projection
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Directional reconstruction

arxiv:2310.06281

» Scintillation light from both leptons and hadrons are capable to directly reconstructing v, direction

- Used JUNO Monte-Carlo sample: Data sample: 135k v,/v,,, 57k v,/U, Charged-Current events,

80% training

» Systematic effects from v interaction models and electronic effects are studied

 Paper accepted, to be published in PRD

 First demonstration in reconstructing v, . direction in a LS detector with MC
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https://arxiv.org/abs/2310.06281

Energy reconstruction

* Energy reconstruction based on the Spherical and Planar models

e Same dataset is used as directional reconstruction

« Can reconstruct both £ . /E with good resolution
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Vertex reconstruction

 Models output vertex position x, vy, z

* Resolution defined by the 68% quantile of distance between true and reconstructed
vertices

o \Vertex resolution for U, ~20 cm and v, ~30 cm, muon tracks are cleaner
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Reconstructing muon events

 Cosmic muons penetrate the detector and can interact
Cosmicimuo

 Many isotopes (such as 8He/°Li) are produced along
their tracks

W\ ‘\‘
b Backgroud
v ‘
VAT

 Main background of signal from reactor neutrinos

* Accurately identifying such events is key to physics
analyses .
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Reconstructing muon tracks
A1 (x1, y1,t z1)k
rue tracC

* Attempt to reconstruct A1, A2 and direction of true tracks for
identifying cosmic muons

l
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* Quantify directional reconstruction performance by a (angle
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Reconstructing muon showers

- Also need to know £, of showers to veto isotopes production - reconstruct dE/dx along

muon track

» Can very well reconstruct the peak £, with RMS of 1 bin

- Total £, of shower reconstructed < true - possibly interfered by £, , from the actual muon
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Summary

* A novel method of reconstructing events for LS detector is
presented

 Multiple ML models are developed to validate the
reconstruction method

* Using JUNO MC samples, different variables that are crucial
to physics analyses such as direction, energy of
atmospheric neutrinos can be reconstructed with good
resolution

* | earn about particle identification in an another talk on
Wednesday!
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JUNO Event Rates after selection

Supernova v
5-7k in 10s for 10kpc

Atmospheric v
several/day
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