

Reconstruction of atmospheric neutrinos and muons using Machine Learning-based methods in JUNO

Wing Yan Ma^[1], Fanrui Zeng^[1], Jiaxi Liu^[2], Xinhai He^[2], Zhen Liu^[2], Wuming Luo^[2], Hongye Duyang^[1], Teng Li^[1] [1] Shandong University [2] Institute of High Energy Physics, CAS **ACAT 2024** 2024/03/11

Outline

- Introduction: JUNO, atmospheric neutrinos
- Motivation and Strategy
- ML models considered
- Reconstruction performances
 - Atmospheric neutrinos' direction/energy
 - Cosmic muons
- Summary \bullet

The JUNO Experiment

- The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose experiment currently under construction in southern China
 - 20 kton liquid scintillator in a spherical vessel surrounded by ~17k 20" + ~25k 3" PMTs
- Primary goal is to measure neutrino mass ordering (NMO)
 - Main sensitivity from reactor neutrinos
 - Pure source of electron anti-neutrino $(\bar{\nu}_{\rho})$ of ~1-10 MeV
 - Measure deficit in $\bar{\nu}_{\rho}$

Atmospheric Neutrinos

- Large flux of atmospheric neutrinos (ν_{atm}) produced by cosmic ray interactions
- Isotropic with different baseline (L) and energy (E)
- Natural source of neutrinos in GeV region

Cosmic

Motivation

- Oscillation sensitivities can be enhanced by studying ν_{atm} oscillations in GeV region
- To study ν_{atm} oscillations one needs to reconstruct neutrinos' direction/energy/flavor (particle type)
- Also important to reconstruct cosmic muons background to main signal
 - A novel, multi-purpose reconstruction method based on Machine Learning

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \cos^4(\theta_{13})$$
siz

 $in^2(2\theta_{23})sin^2\left(1.267\Delta m_{32}^2(eV^2)\frac{L(km)}{E(GeV)}\right)$

		1.0	
		0.9	
-		0.8	
	-	0.7	
-	-	0.6	ν_{μ}
	-	0.5	\downarrow^{μ}
	-	0.4	I
	-	0.3	
		0.2	
		0.1	

Scintillation light at the detector

- Light seen by PMTs of an LS detector is a superposition of light generated from many points along the track
- Shape of light curve received by each PMT depends on :
 - Angle w.r.t. track direction θ
 - Track starting and stopping position
 - Particle type different dE/dx
- Typical LS detectors are designed for low-energy neutrinos v_{atm} oscillations measurements using LS detectors has never been performed

Methodology

- from all PMTs are computationally expensive

Reconstruction of atmospheric neutrinos and muons using Machine Learning-based methods in JUNO | Wing Yan Ma | 2024.03.11

• Due to large number of PMTs in the JUNO detector, directly feeding full waveform

Features that reflects the waveforms are extracted to reduce the data volume.

Feature Extraction

Select characteristic information from waveforms:

- FHT: time of first photon arriving at a PMT
- **Slope**: average slope of curve at the first 4 ns
- Peak time, peak charge, total charge etc. \bullet
- Checked feature importance to select the relevant features to models

 P_0

 Δl

Planar Model: EfficientNetV2

- PMTs are seen as pixels, with each feature projected from the sphere to the planar surface
- EfficientNetV2: superior performance and shorter training time compared to other popular CNNs
- E.g. projected total charge and FHT to $\theta_{PMT} \phi_{PMT} \text{ plane}$

Spherical CNN: DeepSphere

- Graph-CNN: developed for processing spherical data originally developed for cosmology studies
- Maintain rotation covariance
- Avoid distortions caused by projection to a planar surface

- Use Healpix sampling to define vertices
 - Equally divide the sphere into 12 parts
 - Further divide each part into N_{side} parts ($N_{side} = 2^n$)
 - Total number of pixels is 12×2^n
 - If more than one PMTs are in one pixel, info is merged
- Reconstruction of atmospheric neutrinos and muons using Machine Learning-based methods in JUNO | Wing Yan Ma | 2024.03.11

3D point-cloud: PointNet++

- Directly taking 3D point clouds $(N(PMT) \times [x, y, z, features...])$ as inputs
- Detector signal more resemble **point clouds**
 - Minimise information loss during projection

Directional reconstruction

- Scintillation light from both leptons and hadrons are capable to directly reconstructing u_{atm} direction
- Used JUNO Monte-Carlo sample: Data sample: 135k $\nu_{\mu}/\bar{\nu}_{\mu}$, 57k $\nu_{e}/\bar{\nu}_{e}$ Charged-Current events, 80% training
- Systematic effects from v interaction models and electronic effects are studied
- Paper accepted, to be published in PRD \bullet
- First demonstration in reconstructing ν_{atm} direction in a LS detector with MC

arxiv:2310.06281

Energy reconstruction

- Energy reconstruction based on the Spherical and Planar models
- Same dataset is used as directional reconstruction
- Can reconstruct both E_{vis}/E_{ν} with good resolution

Vertex reconstruction

- Models output vertex position x, y, z
- vertices
- Vertex resolution for ν_{μ} ~20 cm and ν_{e} ~30 cm, muon tracks are cleaner

Reconstruction of atmospheric neutrinos and muons using Machine Learning-based methods in JUNO | Wing Yan Ma | 2024.03.11

Resolution defined by the 68% quantile of distance between true and reconstructed

Reconstructing muon events

- Cosmic muons penetrate the detector and can interact
- Many isotopes (such as ⁸He/⁹Li) are produced along their tracks
 - Main background of signal from reactor neutrinos
- Accurately identifying such events is key to physics analyses

Reconstructing muon tracks

- Attempt to reconstruct A1, A2 and direction of true tracks for identifying cosmic muons
- Quantify directional reconstruction performance by α (angle between true and reconstructed track)

Reconstructing muon showers

- muon track
- Can very well reconstruct the peak E_{dep} with RMS of 1 bin

Reconstruction of atmospheric neutrinos and muons using Machine Learning-based methods in JUNO | Wing Yan Ma | 2024.03.11

• Also need to know E_{dep} of showers to veto isotopes production - reconstruct dE/dx along

• Total E_{dep} of shower reconstructed < true - possibly interfered by E_{dep} from the actual muon

Summary

- A novel method of reconstructing events for LS detector is presented
- Multiple ML models are developed to validate the reconstruction method
- Using JUNO MC samples, different variables that are crucial to physics analyses such as direction, energy of atmospheric neutrinos can be reconstructed with good resolution
 - Learn about particle identification in an another talk on Wednesday!

Backup

Supernova v5-7k in 10s for 10kpc

Solar v(10s-1000s)/day

36 GW, 53 km

reactor v, 60/day Bkg: 3.8/day

