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 Foundation models pre-train on a certain (large) dataset for a certain task, 
fine-tune to perform on a different dataset or a different task

 Promising avenue for particle physics: 

 use pre-trained larger models (trained on data) to fine-tune for 
specific tasks, instead of training every task from scratch

 Saves compute and human resources

 Pre-trained models need less data

 Potential of sharing models and architectures within an experiment, 
across collaborations, and with the theory community

Why are foundation models interesting?
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 Two examples:

 ParT (2202.03772) learns classification on one dataset and can be 
finetuned on another (different) dataset

 MPM (2401.13537) trains on a surrogate task to improve the 
performance of a classifier

 In both cases, the pre-training results in better performance of the 
downstream task than training that task from scratch

 However, until now, no model has been able to task-switch between full 
jet generation and classification

 OmniJet-α is a foundation model for jets, built on generative 
pretraining and able to task-switch to classification

Towards foundation models in particle physics
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 Idea: while learning to generate, a model also learns aspects of the data 
useful for other tasks

 The transformer architecture is commonly used in natural language 
processing for generative pre-training

 We choose the original GPT-1 architecture [1], which is based on the 
decoder part of the transformer

Generative pre-training

[1] Radford et al, “Improving language understanding by generative pre-training,” (2018)

1706.03762

[1]

Task 1: 
Generation

Task 2: 
Classification

Data 
encoding GPT
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 The GPT model expects integer tokens, not continuous numbers

 Binning

Tokenization

See eg. 2303.07364 for a generative model using binning
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 The GPT model expects integer tokens, not continuous numbers

 Binning

 Vector Quantized VAE (VQ-VAE, 1711.00937, 2305.08842)

 unconditional (vectors encoded individually)

 conditional (vectors encoded as a set)

Tokenization

See eg. 2303.07364 for a generative model using binning

See also implementations in 2106.08254, 2401.13537

ln𝑝𝑇

Δ𝜂

Δ𝜙

19

10

4

3
2

1

27
26

2522



Anna Hallin | OmniJet-α: The first cross-task foundation model for particle physics – 2403.05618 | ACAT 2024 7

 JetClass [1] 

 Tokenize all 10 classes to evaluate tokenization performance

 For pretraining, generation and classification: use 10M q/g jets and 
10M t  bqq’→  jets

 Use constituent features pT, ηrel, φrel (rel = relative to the jet axis)

 Test 3 approaches:

 Binning: 21x21x21 grid

 VQ-VAE: unconditional (MLP for encoder/decoder) and conditional 
(transformer for encoder/decoder); codebook sizes 512 and 8192

Dataset and tokenization approaches

[1] http://dx.doi.org/10.5281/zenodo.6619767
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       We choose conditional tokens with codebook size 8192

Tokenization results
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The transformer backbone and task specific heads

 Transformer backbone takes tokens as input, 
outputs to task specific head.

 Causal mask prevents attention to future tokens

 Task specific heads

 Generation – linear layer

 Classification – linear layer, ReLU, sum, 
linear layer, softmax

 n heads = 8, N GPT blocks = 3

 6.7M parameters
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 Add start and stop token

 <start token>, token 1, …, token n, <stop token> 

 Combine q/g and t  bqq’→  jets, no labels are passed to the model.

 To generate autoregressively from the trained model:

 Model has learned

 Model recieves <start token> and starts generating

 Model stops if <stop token> is generated or the maximum sequence 
length is reached 

Train with generative head
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 Generally good agreement

 Constituent pT spectrum tail has 
few events  the limited →
codebook size shows up as
bumps

 A simple classifier is unable to 
distinguish generated events 
from the original reconstructed 
tokens

Generative results – reconstructed tokens
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 ”From scratch”: all weights are initialized from scratch, no pre-training is used

 Fine-tuning: load weights of the pre-trained generative model, continue the training with the 
classification head instead of the generative head

 regular fine-tuning: all weigths can change

 backbone fixed: weights of the pre-trained transformer backbone are held fixed

Transfer learning: classify q/g vs t bqq’→
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 Significantly better result when using pre-training

 Full fine-tuning slightly better than backbone fixed

Transfer learning results
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 Significantly better result when using pre-training

 Full fine-tuning slightly better than backbone fixed

Transfer learning results

Pre-trained model requires 
only 1000 training events to 
reach the same accuracy 
level that the ”from scratch” 
model reaches with 1M 
events
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 OmniJet-α is the first cross-task foundation model for particle 
physics

 It is capable of both generating full jets and classifying q/g and t bqq’ →
jets

 Pre-training offers significant improvements in the classifier task 
compared to training from scratch

 Future work: explore different tokenization schemes, improve the 
generative model, expand to further tasks, include other features (eg. 
discrete), train on still larger datasets and more jet types

Conclusion
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Backup
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 Jets are tokenized

 Transformer backbone is trained 
with the generative head

 Generation: autoregressive generation, 
then decode the generated tokens

 Classification: switch the generative 
head to a classification head

Workflow
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Token reconstruction space
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 Train a multi-class classifier on all 10 classes of JetClass 
(note: this is not a reconstructed vs truth test)

 Two types of classifiers are tested: transformer and 
Deep sets

 Train on original JetClass data to obtain an upper limit

 Accuracy starts plateauing at a codebook size of 8192

Quantifying tokenization information loss
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Token quality: distribution and resolution
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Generative results, single-jet type training

 q/g jets  t  bqq’→  jets
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 EPiC-FM (2312.00123): flow matching, no 
tokenization

 Ratios compare OmniJet-α and EPiC-FM to 
their respective truths

 Both models are doing well

 OmniJet-α has a slightly higher discrepancy 
in the tails, except for constituent ηrel and 
number of constituents

Comparison of generation capabilities, t  bqq’→
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