
Evolution of Declarative 
Languages

G. Watts (UW/Seattle)

2024-03-14



What are declarative languages?

G. Watts (UW/Seattle) ACAT 2024 2



What are declarative languages

Goal: Reduce Boiler 
Plate Code!

void MyAnalysisAlgorithm::execute()
{

// Retrieve the JetContainer from the xAOD
const xAOD::JetContainer* jetContainer = nullptr;
if (!evtStore()->retrieve(jetContainer, "MyJetContainer").isSuccess())
{

ATH_MSG_ERROR("Failed to retrieve JetContainer");
return;

}

// Vector to store the pt's of the jets
std::vector<float> jetPtVector;

// Loop over all the jets in the JetContainer
for (const auto& jet : *jetContainer)
{

// Push the pt of the jet onto the vector
jetPtVector.push_back(jet->pt());

}

// Do something with the jetPtVector...
}

G. Watts (UW/Seattle) ACAT 2024 3



What are declarative languages

Goal: Reduce Boiler 
Plate Code!

func_adl

G. Watts (UW/Seattle) ACAT 2024 4

https://gordonwatts.github.io/xaod_usage/intro.html


What are declarative languages

Goal: Reduce Boiler 
Plate Code!

“Write code to extract all jet pt’s from dataset X”

- Our LLM Future

G. Watts (UW/Seattle) ACAT 2024 5



What are declarative languages

Goal: Reduce Boiler 
Plate Code!

Even a compiler is a declarative 
language: it translate intent into 

assembly language!

G. Watts (UW/Seattle) ACAT 2024 6



What Drives Interest?

G. Watts (UW/Seattle) ACAT 2024 7

Complexity of Software

Complexity of Hardware

• Deriving scale factors and systematic errors often requires large 
amount of configuration

• Accessing data can be complex and require a lot of knowledge
• Software is designed to be general and foundational

• Access data of type “jet”
• However, analysis needs specifics

• Access the particle flow jets

• Scale Out
• DASK, batch, etc.

• Data Location
• GRID, local disk, rucio

• Facilities
• Different facilities have different “setups” and magic configuration commands.



What Drives Interest?

G. Watts (UW/Seattle) ACAT 2024 8

Complexity of Software

Complexity of Hardware

• Deriving scale factors and systematic errors often requires large 
amount of configuration

• Accessing data can be complex and require a lot of knowledge
• Software is designed to be general and foundational

• Access data of type “jet”
• However, analysis needs specifics

• Access the particle flow jets

• Scale Out
• DASK, batch, etc.

• Data Location
• GRID, local disk, rucio

• Facilities
• Different facilities have different “setups” and magic configuration commands.

None of this is really the 
physics!



What Drives Interest?

G. Watts (UW/Seattle) ACAT 2024 9

Physics Infrastructure
Selection cuts, ML, mass, 

statistical models, etc.
Submit batch job, interactive 
scale-out, temporary results 

storage, dataset locations, plot 
storage, versioning, etc.



History

G. Watts (UW/Seattle) ACAT 2024 10



Amsterdam (2017)

G. Watts (UW/Seattle) ACAT 2024 11

indico

(Eduardo Rodrigues)

https://indico.cern.ch/event/613842/
https://indico.cern.ch/event/613842/contributions/2591057/attachments/1464179/2262775/EduardoRodrigues_2017-05-23_HSFAmsterdam.pdf


Amsterdam

G. Watts (UW/Seattle) ACAT 2024 12

From the report:

• A frequent observation during the workshop is that these steps often involve semantics that can be 
expressed in a declarative programming style.

• The use of declarative interfaces may allow a hiding of the concurrency complexity.
• Declarative- or functional-like models are a particularly advantageous way HEP analysts could focus on 

describing “what they want to do” as opposed to “how to do it.”
• Another recurring theme was functional / declarative style programming, decoupling problem description 

from implementation.
• Functional, declarative programming was a prominent theme. Declarative avoids over-specifying the order 

of operations. Functional avoids over-specifying sequential/parallel. This was part of a more general 
theme of splitting the “what I want” from the “how it’s produced,” which avoids over-specifying incidental 
details in general.

https://hepsoftwarefoundation.org/assets/AnalysisEcosystemReport20170804.pdf


Analysis Description Languages for the LHC 
(2019)

G. Watts (UW/Seattle) ACAT 2024 13

• Included a survey of many languages
• ADL (Analysis Description Language)
• CutLang
• Lhada2rivet
• C#’s LINQ
• NAIL (Natural Analysis Implementation 

Language)
• YAML as an ADL
• TTreeFormula
• AEACUS and RHADAMANTUS

• Covered topics like preservation, what is missing, 
etc.

• Event included a talk by Jim Pivarski How to build 
your own language: hands-on demo”

indico

https://indico.cern.ch/event/769263/timetable/


Types of Declarative Languages

G. Watts (UW/Seattle) ACAT 2024 14

Domain Specific Language Standalone

Use an existing (general purpose) 
programming language. Use language 
features to add analysis semantics.

Everything is under the control of the 
language author

Confined to the language’s syntax, but can 
take advantage of all the existing 
knowledge and syntax (and sometimes 
libraries)

Syntax can be purpose suited to HEP 
analysis, but must re-invent/code general 
purpose features (e.g. expressions)

Hard to shift to a different backend 
language (e.g. if you need C++ as part of 
your backend, or batch jobs)

Relatively easy to move between different 
backends. But also difficult to use external 
libraries written by others.



Interactive Analysis

G. Watts (UW/Seattle) ACAT 2024 15

From the Poster “Quasi interactive analysis of 
High Energy Physics big data with high 
throughput” by Tommaso Tedeschi

An old new use case

Language must accommodate the 
development phase of an analysis

• Want to use commonly defined virtual datasets (e.g. 
pre-selection, selection, control region A, etc.)

• Investigate plots that are never used in the final 
analysis note

• Build ML training samples
• Re-run a single plot many times
• Easily adjust selection cuts
• Active code, plots, and text combined (notebooks)

Many Declarative Analysis Languages are not built to support this!
(though they can)



A few Examples

G. Watts (UW/Seattle) ACAT 2024 16



ADL

G. Watts (UW/Seattle) ACAT 2024 17

(ADL Proposal)

https://arxiv.org/abs/1605.02684


ADL

G. Watts (UW/Seattle) ACAT 2024 18

• Based around text files
• Declaration Bocks

• Aimed at a full analysis chain
• Based off underlying experiment definition

• E.g. “Muon”
• Designed to work with multiple frameworks
• Aimed at letting both experimentalists and 

theorists complete an analysis
• Works in several experiment contexts
• Very successful in helping students get started

“Standalone”



Example: NAIL

G. Watts (UW/Seattle) ACAT 2024 19

Sample generates a small output flat root-tuple from an 
input file

Natural Analysis Implementation Language

See ACAT Poster!!

• Python-based DSL
• Backend is RDataFrame

• Semantics are a loose wrapper around 
RDF

• Can make histograms or output files (for 
training!)

From Poster

NAIL

RDF

“DSL”

https://github.com/arizzi/nail/blob/master/simple.py
https://indico.cern.ch/event/1330797/contributions/5796598/attachments/2816755/4917564/ACAT2024-Declarative_paradigms_for_analysis_description_and_implementation-poster.pdf


func_adl (Functional ADL)

G. Watts (UW/Seattle) ACAT 2024 20

ServiceX

• Data Selection looks a lot like a SQL query
• Use a functional form of SQL (from C# LINQ research)

• Built for data delivery
• Not designed for histograms

• Builds a computational graph in python
• Translates it to C++

• Translate from a proprietary format to flat ntuples or 
parquet files
• ATLAS xAOD’s, for example
• Demo on CMS miniaod

• Supplies data to awkward and pandas
• Prototype of a RDF source

• Primary implementation uses ServiceX as backend
• See Poster here at ACAT

From poster

“DSL”

https://indico.cern.ch/event/1330797/contributions/5796587/attachments/2817384/4918917/acat2024_ServiceX_Choi.pdf
https://indico.cern.ch/event/1330797/contributions/5796587/attachments/2817384/4918917/acat2024_ServiceX_Choi.pdf


DASK-Awkward Array

G. Watts (UW/Seattle) ACAT 2024 21

awkard is the numpy of the python ecosystem for HEP data

awkward
• Immediate/eager 

execution
• Run locally on-machine 

in memory

dask-awkward
• Build compute graph
• The .compute() runs 

the data
• Distributed (across 

cluster)

Allows for:
• Translation to other backends
• Editing the compute graph after 

creation
• Optimization of graph can be 

performed

“DSL”



Challenges
&

Opportunities

G. Watts (UW/Seattle) ACAT 2024 22



The Scalability Problem

G. Watts (UW/Seattle) ACAT 2024 23

Declarative 
Analysis 

Specification

Batch System 1
(lxr…)

Batch System 2
(condor…)

Submissi
on 

bundle

Submissi
on 

bundle

Results

Scaling systems aren’t written by DL authors!

Declarative Language 
Translation and Execution



The Scalability Problem

G. Watts (UW/Seattle) ACAT 2024 24

Batch Jobs Generate 
Histograms

Batch Jobs Generate 
ntuples

Interactive PAW to 
generate histograms

Batch Jobs Generate 
ntuples

Batch PAW to generate 
histograms

Batch Jobs Generate 
ntuples

Interactive RDataFrame 
scaling

In memory numpy
and pandas
(interactive)

DASK scaling
(interactive)

Interactivity isn’t a new use case
It is just a new possibility

Tim
e



Possible Convergence

G. Watts (UW/Seattle) ACAT 2024 25

Directed Acyclic Graph (DAG) of computations

• The DAG is known before any calculation is done
• Anyone can build it, or even edit it!

New opportunities for integration between languages 
and infrastructure.

• Integration with other ADL’s
• Selection cut text
• Vertex building
• Sample and control region 

definitions
• Unique optimizations
• Cross platform possibilities

In the dask-awkward world…



Which Declarative Language Will Win?

G. Watts (UW/Seattle) ACAT 2024 26



Declarative Languages for Analysis

Compelling goals

• Reduce boiler plate

• Reduce time-to-insight

• Hide complexity of software and 
hardware

Field is moving away from boiler-
plate and complexity

• It isn’t just declarative languages 
that are pushing this!

Paths Forward

• Supporting Interactive Use Cases

• Deeper integration with abstract 
DAG’s that are portable across 
machines

• Will this lead to deep multi-
language integration with efficient 
execution?
• I hope so!

G. Watts (UW/Seattle) ACAT 2024 27



Bonus: Large Language Models

G. Watts (UW/Seattle) ACAT 2024 28

• Everything is in place
• Code on slide ~3 was written by ChatGPT

• Ability for the LLM to execute the code in a 
sandbox to test it

• Integrated into a code editor

• So… we are just waiting…



Bonus: Large Language Models

G. Watts (UW/Seattle) ACAT 2024 29

• Everything is in place
• Code on slide ~3 was written by ChatGPT

• Ability for the LLM to execute the code in a 
sandbox to test it

• Integrated into a code editor

• So… we are just waiting…

Educational 
Outreach with AI-
Assisted CERN 
Open Data 
Analysis

https://indico.cern.ch/event/1384652/contributions/5828512/attachments/2805977/4896202/2024-02-28-Outreach-ATLASOpenDataLLM.pdf

