evermer

dilax evermore

Peter Fackeldey, Benjamin Fischer, Felix Zinn, Martin Erdmann

ACAT 2024

14.03.24

What is evermore?

- <u>Python library</u> (pip install evermore)
- Provides tools for statistical model & likelihood building
- Based on JAX (numpy/scipy with JIT & autodiff.) and Equinox
- Integrates nicely with JAX ecosystem, e.g.:
 - Optimizers: JAXopt, Optimistix, Optax
 - Utilities: chex, orbax

Key Concept:

- *Everything* in evermore is a JAX PyTree ("Models as PyTrees" \rightarrow backup)
 - \rightarrow fully compatible with JAX composable transformations
 - Differentiability (jax.grad): gradients through likelihoods (like neos)
 - Performance (jax.jit, jax.vmap): GPU acceleration, vectorized fitting, ...

evermer

Minimization

iminuit

JAXopt

Optimistix

Model Definition

⁵ Models as PyTrees: evermore Example

• Represent statistical models as PyTrees (recommendation: eqx.Module)

- Leaves are (primarily) nuisance parameters \rightarrow evm.Parameter
- Example: PyTree with leaves mu and syst

```
class Model(eqx.Module):
mu: evm.Parameter
syst: evm.Parameter
```

⁵ Models as PyTrees: evermore Example

- Represent statistical models as PyTrees (recommendation: eqx.Module)
- Leaves are (primarily) nuisance parameters \rightarrow evm.Parameter
- Example: PyTree with leaves mu and syst

```
class Model(eqx.Module):
    mu: evm.Parameter
    syst: evm.Parameter
    def __call__(self, hists: dict[str, Array]) → Array:
        mu_modifier = self.mu.unconstrained()
        syst_modifier = self.syst.lnN(width=jnp.array([0.9, 1.1]))
        return mu_modifier(hists["signal"]) + syst_modifier(hists["bkg"])
```

⁵ Models as PyTrees: evermore Example

• Represent statistical models as PyTrees (recommendation: eqx.Module)

Peter F. - 14.03.24

- Leaves are (primarily) nuisance parameters \rightarrow evm.Parameter
- Example: PyTree with leaves mu and syst

```
class Model(eqx.Module):
    mu: evm.Parameter
    syst: evm.Parameter
    def __call__(self, hists: dict[str, Array]) \rightarrow Array:
        mu_modifier = self.mu.unconstrained()
        syst_modifier = self.syst.lnN(width=jnp.array([0.9, 1.1]))
        return mu_modifier(hists["signal"]) + syst_modifier(hists["bkg"])
model = Model(mu=evm.Parameter(1.0), syst=evm.Parameter(0.0))
hists = {"signal": jnp.array([3]), "bkg": jnp.array([10])}
print(f"Expectation: {model(hists)}")
# \rightarrow Expectation: [13.]
```

Step 3: Evaluate model with histograms

6 Modifiers: Basics

- evm.modifier defines how bins are modified
- evm.modifier use a evm.Parameter and a evm.effect (e.g. gauss or InN)
- Correlated evm.modifier(s): use the same evm.Parameter with a different evm.effect

7 Modifiers: Advanced Concepts

- Advanced modifier concepts/transformations:
 - Combine modifiers into new modifier: evm.modifier.compose

- Apply modifiers based on condition: evm.modifier.where
- Apply a modifier only in certain bins: evm.modifier.mask
- Transform modifier based on function: evm.modifier.transform
- Barlow-Beeston-Lite implementation with evm.modifier.where

```
syst = evm.Parameter()
lnN_mod1 = syst.lnN(width=jnp.array([0.9, 1.1]))
lnN_mod2 = syst.lnN(width=jnp.array([0.8, 1.2]))
hist = jnp.array([3, 12, 50])
lnN_composition = evm.modifier.compose(lnN_mod1, lnN_mod2)  # `compose`
lnN_where = evm.modifier.where(hist > 10, lnN_mod1, lnN_mod2)  # `where`
lnN1_mask = evm.modifier.mask(jnp.array([True, False, True]), lnN_mod1)  # `mask`
lnN1_sqrt_mod = evm.modifier.transform(jnp.sqrt, lnN_mod1)  # `transform`
# `clip`
clip = partial(jnp.clip, a_min=0.8, a_max=1.2)
lnN1_clipped = evm.modifier.transform(clip, lnN_mod1)
```

Likelihood Definition ("Loss function")

$$\log \mathscr{L} = \sum \text{Poisson}(d_i, \lambda_i(s_i, b_i, \vec{\theta}))$$

```
nll = evm.loss.PoissonNLL()
def loss(model: Model, hists: dict[str, Array], observation: Array) → Array:
    expectation = model(hists)
    # Poisson NLL of the expectation and observation
    log_likelihood = nll(expectation, observation)
```

Step 1: Define Poisson negative log-likelihood

9 Negative Log-Likelihood ("loss")

$$\log \mathscr{L} = \sum_{j} \text{Poisson}(d_i, \lambda_i(s_i, b_i, \vec{\theta})) + \sum_{j} \pi_j(\theta_j)$$

nll = evm.loss.PoissonNLL()

```
def loss(model: Model, hists: dict[str, Array], observation: Array) → Array:
    expectation = model(hists)
    # Poisson NLL of the expectation and observation
    log_likelihood = nll(expectation, observation)
    # Add parameter constraints from logpdfs
    constraints = evm.loss.get_param_constraints(model)
    log_likelihood += evm.util.sum_leaves(constraints)
    return -jnp.sum(log_likelihood)
```

Step 2: Add parameter constraints and sum up

class Model(eqx.Module): mu: evm.Parameter syst: evm.Parameter

Model definition

```
def __call__(self, hists: dict[str, Array]) → Array:
    mu_modifier = self.mu.unconstrained()
    syst_modifier = self.syst.lnN(width=jnp.array([0.9, 1.1]))
    return mu_modifier(hists["signal"]) + syst_modifier(hists["bkg"])
```

nll = evm.loss.PoissonNLL()

Likelihood definition

def loss(model: Model, hists: dict[str, Array], observation: Array) → Array:
 expectation = model(hists)
 # Poisson NLL of the expectation and observation
 log_likelihood = nll(expectation, observation)
 # Add parameter constraints from logpdfs
 constraints = evm.loss.get_param_constraints(model)
 log_likelihood += evm.util.sum_leaves(constraints)
 return -jnp.sum(log_likelihood)

11 Performance (NLL profile)

- Likelihood profile for a Model with:
 - 1 signal process (modified by μ)
 - 100 background processes (modified by 10% InNs each)
 - Each process has 100 bins


```
class LinearConstrained(eqx.Module):
    weights: evm.Parameter
    biases: jax.Array
```

```
def __init__(self, in_size, out_size, key):
    wkey, bkey = jax.random.split(key)
    # weights
    constraint = evm.pdf.Gauss(
        mean=jnp.zeros((out_size, in_size)),
        width=jnp.full((out_size, in_size), 0.5),
    )
    self.weights = evm.Parameter(
        value=jax.random.normal(wkey, (out_size, in_size)), constraint=constraint
    )
```

```
# biases
self.biases = jax.random.normal(bkey, (out_size,))
```

```
def __call__(self, x: jax.Array):
    return self.weights.value @ x + self.biases
```

13 Summary

Peter F. - 14.03.24

- Evermore is a library for binned likelihood fits (in HEP)
- Based on JAX & Equinox, and the concept of PyTrees
- Key goals:
 - Performance (jax.jit, jax.vmap, ...)
 - Fully-differentiable (jax.grad, jax.hessian, ...)
 - Pythonic Model API (similar to <u>torch.nn.Module</u>) with eqx.Module
 - Seamless integration into JAX-ecosystem
- Give it a try \rightarrow *pip install evermore*
 - <u>GitHub</u>
 - Docs
 - Examples

<u>Soon:</u> stress-test with large fit model (real analysis)

vermore / examples / []	οσρrì	M Āre	ב
pfackeldey 'sumw' -> 'hist', 'sumw2' -> 'histw2'		<u>M</u> YI (
Name			
•			
bin_by_bin_uncs.py	evermore		
dnn_weights_constraint.py	docs passing CI passing pypi v0.2.0 python 3.10 3.11 3.12	3	
🖞 grad_nll.py	Differentiable (binned) likelihoods in JAX.		
🗅 model.py	Installation		
🗅 nll_fit.py			
nll_profiling.py	python -m pip install evermore		Q
uisance_parameter.ipynb	renamed 'dilax' -> 'evermore'	2 weeks ago	_
serialize_model.py	satisfy new CI pipeline	6 months ago	
toy_generation.py	properly add bin_by_bin staterrors	3 days ago	

¹⁸ Putting the pieces together: full example

class Model(eqx.Module): mu: evm.Parameter syst: evm.Parameter

- def __call__(self, hists: dict[str, Array]) → Array: mu_modifier = self.mu.unconstrained() syst_modifier = self.syst.lnN(width=jnp.array([0.9, 1.1])) return mu_modifier(hists["signal"]) + syst_modifier(hists["bkg"])
- nll = evm.loss.PoissonNLL()

def loss(model: Model, hists: dict[str, Array], observation: Array) → Array:
 expectation = model(hists)
 # Poisson NLL of the expectation and observation
 log_likelihood = nll(expectation, observation)
 # Add parameter constraints from logpdfs
 constraints = evm.loss.get_param_constraints(model)
 log_likelihood += evm.util.sum_leaves(constraints)
 return -jnp.sum(log_likelihood)

@eqx.filter_jit

def make_step(
 model: Model, opt_state: PyTree, hists: dict[str, Array], observation: Array
) → PyTree:
 # differentiate full model
 grads = eqx.filter_grad(loss)(model, hists, observation)
 updates, opt_state = optim.update(grads, opt_state)
 # apply nuisance parameter updates
 model = eqx.apply_updates(model, updates)
 return model, opt_state

model = Model(mu=evm.Parameter(1.0), syst=evm.Parameter(0.0))
hists = {"signal": jnp.array([3]), "bkg": jnp.array([10])}
observation = jnp.array([15])

optim = optax.sgd(learning_rate=1e-2)
opt_state = optim.init(eqx.filter(model, eqx.is_inexact_array))

minimize model with 100 steps

for step in range(100):
 model, opt_state = make_step(model, opt_state, hists, observation)
print(f"{model.mu.value=}, {model.syst.value=}")
→ model.mu.value=[1.316672], model.syst.value=[0.06218078]

Model definition

Likelihood definition

Minimization

¹⁹ More Complete Model Example


```
class SPlusBModel(eqx.Module):
   mu: evm.Parameter
   norm1: evm.Parameter
   norm2: evm.Parameter
    shape1: evm.Parameter
   def __init__(self, hist: dict[str, Array], histw2: dict[str, Array]) → None:
        self.mu = evm.Parameter(value=jnp.array([1.0]))
        self = evm.parameter.auto_init(self)
   def __call__(self, hists: dict) \rightarrow dict[str, Array]:
        expectations = {}
        sig_mod = self.mu.unconstrained()
        expectations["signal"] = sig_mod(hists["nominal"]["signal"])
        bkg1_lnN = self.norm1.lnN(width=jnp.array([0.9, 1.1]))
        bkg1_shape = self.shape1.shape(
            up=hists["shape_up"]["bkg1"],
           down=hists["shape_down"]["bkg1"],
        bkg1_mod = bkg1_lnN @ bkg1_shape
        expectations["bkg1"] = bkg1_mod(hists["nominal"]["bkg1"])
        bkg2_lnN = self.norm2.lnN(width=jnp.array([0.95, 1.05]))
        bkg2_shape = self.shape1.shape(
            up=hists["shape_up"]["bkg2"],
           down=hists["shape_down"]["bkg2"],
        bkg2_mod = bkg2_lnN @ bkg2_shape
        expectations["bkg2"] = bkg2_mod(hists["nominal"]["bkg2"])
        return expectations
```

²⁰ Models as PyTrees: What are PyTrees?

• PyTrees are "tree-like structures built out of container-like Python objects"

Peter F. - 14.03.24

What JAX does

Many JAX functions operate on PyTrees of jax.Array(s)

What I (user) see

- Many PyTree manipulation tools (jax.tree_util, eqx.{partition,combine,filter})
- Custom PyTrees by providing tree_flatten & tree_unflatten methods

pytree = { "pytree" gets flattened "foo": jnp.array([1, 2, 3]), Only leafs enter function "bar": { "a": jnp.array([4, 5, 6]), Transforms fun: "b": jnp.array([7, 8, 9]), 1 arg (PyTree) \rightarrow 3 args (Array) }, translated lambda ; a:i32[3] b:i32[3] c:i32[3]. let def fun(pytree: PyTree) \rightarrow Array: x = pytree["bar"]["a"] + pytree["bar"]["b"] d:i32[3] = add a b return x * pytree["foo"] e:i32[3] = mul d c **in** (e,) } print(jax.make_jaxpr(fun)(pytree))

21 Models as PyTrees: Benefits

- Compatible with JAX transformations (jax.jit, jax.grad, jax.vmap, ...)
- Model surgery, e.g.:
 - Interact only with the leafs of type evm.Parameter (extract constraints, sampling, ...)

Peter F. - 14.03.24

- Freeze evm.Parameter during minimisation
- A model can hold additional information, e.g., DNN weights ("Rest")

Example: evm.Parameter sampling

parameter leafs

5 Combine PyTrees

parameter leafs "foo": None, "bar": evm.Parameter(), "baz": { model "a": None, "b": [evm.Parameter(), None], "c": None, "foo": jnp.array([1, 2, 3]), }, "bar": evm.Parameter(), "baz": { "a": jnp.array([4, 5, 6]), eqx.combine "b": [evm.Parameter(), jnp.array([1.0])], "c": None, other leafs }, "foo": jnp.array([1, 2, 3]), "bar": None, "baz": { "a": jnp.array([4, 5, 6]), "b": [None, jnp.array([1.0])], "c": None, },

Reduce Compiletime: avoid python loops wherever possible

Auto setup evm.Parameter: evm.parameter.auto_init(self)

Do

Don't

class SPlusBModel(eqx.Module):	<pre>class SPlusBModel(eqx.Module):</pre>
mu: evm.Parameter	mu: evm.Parameter
norm1: evm.Parameter	norm1: evm.Parameter
norm2: evm.Parameter	norm2: evm.Parameter
shape1: evm.Parameter	shape1: evm.Parameter
<pre>definit(self, hist: dict[str, Array], histw2: dict[str, Array]) → None: self.mu = evm.Parameter(value=jnp.array([1.0])) self = evm.parameter.auto_init(self)</pre>	<pre>definit(self, hist: dict[str, Array], histw2: dict[str, Array]) → Not self.mu = evm.Parameter(value=jnp.array([1.0])) self.norm1 = evm.Parameter() self.norm2 = evm.Parameter() self.shape1 = evm.Parameter()</pre>

Other tricks: <u>https://docs.kidger.site/equinox/tricks/</u>

25 Fully factorized constraint concept

- Idea: Distinguish between the constraint term for the likelihood and the effect of the pdf that changes the expectation
- (Almost) every effect defines its constraint through a Gaussian with 0 mean and width of 1 ($\mathcal{G}(0,1)$)
- The translation between $\mathscr{G}(0,1)$ and the scale factor for the bin exp. of any effect can be calculated with the (inverse) CDFs:

$$\mathsf{SF}(\theta) = \mathsf{iCDF}(\pi(X)) \big[\mathsf{CDF}(\mathscr{G}(0,1))(\theta) \big] \quad (\mathsf{Eq. 1})$$

Peter F. - 14.03.24

- θ : parameter, π : effect pdf, X: aux. measurement
- Visual example:

"A +1 sigma deviation of θ corresponds to a SF of 2.5 for a gaussian effect with width 1.5"

26 Combining Analyses

