
SCALABLE GRAPH NEURAL NETWORK (GNN) TRAINING FOR TRACK FINDING

Ivan Ladutska Brenden Reeves, Caroline Manjerovic, Alina Lazar, Tuan Minh Pham, Chen-Hsun Chan, Daniel Murnane,
Xiangyang Ju, Paolo Calafiura

SCALABLE GRAPH NEURAL NETWORK (GNN) TRAINING FOR TRACK FINDING

Ivan Ladutska Brenden Reeves, Caroline Manjerovic, Alina Lazar, Tuan Minh Pham, Chen-Hsun Chan, Daniel Murnane,
Xiangyang Ju, Paolo Calafiura

Abstract

Graph Neural Networks (GNNs) have demonstrated signifi-
cant performance in addressing the particle track-finding
problem in High-Energy Physics (HEP). Traditional algo-
rithms exhibit high computational complexity in this domain
as the number of particles increases. We address the chal-
lenges of training GNN models on large, rapidly evolving
datasets, a common scenario given the advancements in
data generation, collection, and increase in storage capa-
bilities. The computational and GPU memory requirements
present significant roadblocks in efficiently training GNNs
on large graph structures. One effective strategy to re-
duce training time is distributed data parallelism (DDP)
on multi-GPUs, which involves averaging gradients across
the devices used for training.

TrackML Dataset

The TrackML dataset consists of independent events
generated through a Monte Carlo simulation of proton-
proton collisions.

The full dataset contains 10,000 events. During pre-
processing, we convert these coordinates to spherical co-
ordinates.

This dataset is notable because the simulations give us
information about the ground truth: we know the "actual"
tracks of each particle. We can compute the accuracy in
terms of efficiency and purity.

Hardware Platform

Fig. 1: Perlmutter Suppercomputer

Perlmutter supercomputer hosted at the the National En-
ergy Research Scientific Computing Center (NERSC) has
6,159 NVIDIA A100 Tensor Core GPUs with 80GB memory
per GPU and 4 GPUs per node.

Distributed Data Parallelism (DDP)

The goal is to investigate the scalability of DDP in relationship with the number of GPUs used.
What is the impact of varying GPU numbers on training runtime acceleration and model performance?

Fig. 2: Each process performs a full forward (a) and backward (b) pass in parallel

DDP Speed up and Performance

Fig. 3: Speed up of running DDP (a) and efficiency on the validation dataset (b)

Table 1: Validation Performance Metrics during Training and Runtime

of GPUs Efficiency (%) Target Purity v Total Purity (%) Purity (%) AUC Validation Loss Epoch (s) Batch (s)
1 99.6 87.831 99.249 99.152 98.577 0.00406 34.36 0.24
2 99.778 88.431 99.513 99.452 98.842 0.00226 39.63 0.29
4 99.838 88.508 99.587 99.536 98.846 0.00176 38.73 0.28
8 99.871 88.524 99.658 99.616 98.841 0.00141 42.12 0.31
16 99.903 88.499 99.674 99.633 98.884 0.00114 45.48 0.34
32 99.945 87.931 99.443 99.371 98.79 0.00124 47.6 0.37

Distributed Data Parallel

1. Each GPU across each node gets its own process.

2. Each GPU gets visibility into a subset of the overall
dataset. It will only ever see and train on that subset.

3. Each process initializes a copy of the model.

4. Each process performs a full forward and backward pass
in parallel as shown in figure 2.

5. The gradients are synchronized and averaged across all
processes when triggered by a signal.

GPU and Memory Utilization

Table 2: Max GPU Utilization and Memory on the Main Node

of GPUs GPU Util (%) Memory (GB) Speed up
1 59.93 20.52 1
2 65.8 22.23 1.67
4 65.88 23.58 3.52
8 68.02 26.51 6.31
16 73.91 26.18 11.86
32 80.91 23.37 22.26

Discussion and Conclusions

Data Parallelism: DDP allows you to split your dataset
across multiple GPUs (figure 2).

Reduced Training Time: By distributing the workload
across multiple devices, DDP can significantly reduce the
training time. However, as shown in figure 3 (a) the speed
up is not linear with the number of GPUs.

Increase Performance: By utilizing DDP effectively, you
can process more data and increase performance as
shown in figure 3 (b) and in table 1.

Acknowledgements

This research was supported by the U.S. Department of Energy’s Office of Science,
Office of High Energy Physics, of the US Department of Energy under Contracts No.
DE-SC0024364 (FAIR).
This research used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility located
at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-
05CH11231 and the Ohio Supercomputer Center (OSC).

