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LHC and Jet Tagging
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Intro to SSL strategies

To learn useful features from the data itself without using labels

As opposed to supervised learning, which is limited by the
availability of labeled data, self-supervised approaches can learn
from vast unlabeled data (2304.12210)
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Goals of the Project

 To show that we can leverage SSL to learn powerful, generic, and transferable
features directly from vast unlabeled data.

Train on
labeled simulation
dataset 1

Train on
labeled simulation
dataset 2

Current workflow using only Supervised Learning



Goals of the Project

e Focus on studying the effect of scaling up the sizes of pretraining datasets on the
performance of different SSL strategies.
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Workflow incor5porating SSL



Toward Foundation Model

N | CMS Experiment at the LHC, CERN
"B Data recorded: 2016-Aug-13 16:51:13.749568 GMT Tasks
Run / Event / LS: 278803 / 465417690 / 259 Data
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Necessity of SSL in LHC Physics

e Simulations don't model the data perfectly: need a way to directly train on data

e |t will be even harder and more computationally expensive to produce high-quality
simulations for High Luminosity LHC (1803.04165)
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Outline

e Brief intro to SSL

 Goal of the Project

 Necessity of SSL in LHC physics

e |ntro to VICReg and SImCLR

* Proof of concept: Training on Top Tagging
 Transfer Learning: from JetClass to Top Tagging

e Future work



general principles
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Intro to VICReg and SImCLR

loss functions

VICReg loss SIMCLR loss
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Intro to VICReg and SImCLR

Model Architecture for encoder

e Started with a simple Transformer encoder

 Working on switching to more advanced architectures such as Particle Transformer
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Datasets
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Dataset name Size Description Role in transfer learning
JetClass . Contains 10 Stand in for unlabeled “data”,
100 Million Jets . .
Dataset classes of jets use for pretraining
Top Tagging - Only Top and Stand in for labeled
Dataset 1.2 Million Jets QCD jets “simulation”, use for fine-tuning
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Top Tagging
Comparison between VICReg and SImCLR
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Training on Top Tagging

Comparison between VICReg and SImCLR

e SIMCLR, with its clearer separation of features, outperforms VICReg in top quark jet
tagging, and thus will be the main focus of our continued discussion.

* Potential contributing factors:
 No explicit use of negative pairs (both pro and con)

e L oss function has too many hyper parameters: hard to tune

15



Training on Top Tagging

Are the features distinguishing?

e As a proof of concept, we want to show that the model can learn some useful
features that can distinguish between signal and background.
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t-SNE Visualization of Jet Features
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Training on Top Tagging

The model has learnt invariance to augmentations

Distance botween|  ateh 11 batch1 | batch 2 batch 2
representations original augmented| original augmented
batch 1 0 B B B
original
batch 1 510 5 B B
augmented
batch 2 13.92 13.90 0 _
original
batch 2 13.96 13.97 218 0
augmented
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Pretraining on JetClass and fine-tuning on Top Tagging

Despite limited data, the pre-trained model achieves higher accuracy

and converges faster

Model accuracy comparison
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A linear layer was added to the
encoder for fine-tuning.

Blue curve was pre-trained on
1% of the JetClass dataset (1
Million jets) with SImCLR

Red curve was trained from
scratch

Both models share the same
hyperparameters

Both models are trained with
100K jets (1/12 of the Top
Tagging Dataset)



Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model requires significantly fewer samples to
achieve high accuracy and rejection rate

* The averages and standard deviations over 5 trainings are shown in solid lines and
uncertainty bands, respectively

Model Accuracy Comparison Model Rejection Comparison
—e— Pre-trained — | —e— Pre-trained -
0.901 —e— From scratch 102 - —&— From scratch
0.85 -
> :
© 0.80 13
v o
O D
< 0.75 o
10%
0.70 |
103 104 10° 10° 103 104 10° 10°
N labeled training samples N labeled training samples

Rejection: inverse of background rejection at 50% signal
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Pretraining on JetClass and fine-tuning on Top Tagging
The pre-trained model converges much faster

* The averages and standard deviations over 5 trainings are shown in solid lines and
uncertainty bands, respectively

Model Training Comparison
N epochs it takes to reach within ~1% of final accuracy
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Pretraining on JetClass and fine-tuning on Top Tagging

The pre-trained model shows a much clearer separation between signal and background
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Top Tagging

Pretraining on JetClass and fine-tuning on

The pre-trained model shows a much clearer separation between signa

and background
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Conclusion

 Through contrastive learning, a vanilla transformer encoder was able to learn useful
representations of jets from unlabeled data.

By pre-training on unlabeled data, the transformer encoder was able to learn the

downstream task faster and with fewer labeled training samples, compared with one
we trained from scratch.
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Future work

o Study the scalability of dataset size in pretraining

o Study the effectiveness of more advanced architectures like the Particle Transformer
as the backbone encoder

 Explore other physically motivated augmentations
* Pairing the two jets from dijet events

 Using two subjets clustered with smaller radil
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Accuracies of two trials trained with 1000 labeled samples
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The CMS detector coordinate system

\ center of
el the LHC
e ATLAS

https://tikz.net/axis3d_cms/


https://tikz.net/axis3d_cms/

Details of the Top Tagging Dataset

The top signal and mixed quark-gluon background jets are produced with using Pythia8 [25]
with its default tune for a center-of-mass energy of 14 TeV and ignoring multiple interactions
and pile-up. For a simplified detector simulation we use Delphes [26]| with the default ATLAS
detector card. This accounts for the curved trajectory of the charged particles, assuming a
magnetic field of 2 T and a radius of 1.15 m as well as how the tracking efficiency and momen-
tum smearing changes with 7. The fat jet is then defined through the anti-kr algorithm |27
in FastJet 28] with R = 0.8. We only consider the leading jet in each event and require

pr; =550 .... 650 GeV . (1)

For the signal only, we further require a matched parton-level top to be within AR = 0.8,
and all top decay partons to be within AR = 0.8 of the jet axis as well. No matching is
performed for the QCD jets. We also require the jet to have |n;| < 2. The constituents are
extracted through the Delphes energy-flow algorithm, and the 4-momenta of the leading 200
constituents are stored. For jets with less than 200 constituents we simply add zero-vectors.

1902.09914



Details of the JetClass Dataset

Simulation setup. Jets in this dataset are simulated with
standard Monte Carlo event generators used by LHC ex-
periments. The production and decay of the top quarks
and the W, Z and Higgs bosons are generated with MAD-
GRAPHS_aMC@NLO (Alwall et al., 2014). We use PYTHIA
(Sjostrand et al., 2015) to evolve the produced particles, 1.e.,
performing parton showering and hadronization, and pro-
duce the final outgoing particles'. To be close to realistic
jets reconstructed at the ATLAS or CMS experiment, detec-
tor effects are stmulated with DELPHES (de Favereau et al.,
2014) using the CMS detector configuration provided in
DELPHES. In addition, the impact parameters of electrically
charged particles are smeared to match the resolution of the
CMS tracking detector (CMS Collaboration, 2014). Jets
are clustered from DELPHES E-Flow objects with the anti-
kt algorithm (Cacciari et al., 2008; 2012) using a distance
parameter i = 0.8. Only jets with transverse momentum
in 500-1000 GeV and pseudorapidity |n| < 2 are consid-
ered. For signal jets, only the “high-quality’ ones that fully
contain the decay products of initial particles are included?.

2202.03772



Training on Top Tagging

Are the features correlated?

Distribution of Pearson Correlation Coefficients for Top features Distribution of Pearson Correlation Coefficients for QCD features
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