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Abstract. This study introduces an innovative approach to analyzing unlabeled data
in high-energy physics (HEP) through the application of self-supervised learning (SSL).
Faced with the increasing computational cost of producing high-quality labeled simula-
tion samples at the CERN LHC, we propose leveraging large volumes of unlabeled data to
overcome the limitations of supervised learning methods, which heavily rely on detailed
labeled simulations. By pretraining models on these vast, mostly untapped datasets,
we aim to learn generic representations that can be finetuned with smaller quantities
of labeled data. Our methodology employs contrastive learning with augmentations on
jet datasets to teach the model to recognize common representations of jets, addressing
the unique challenges of LHC physics. Building on the groundwork laid by previous
studies, our work demonstrates the critical ability of SSL to utilize large-scale unlabeled
data effectively. We showcase the scalability and effectiveness of our models by gradually
increasing the size of the pretraining dataset and assessing the resultant performance
enhancements. Our results, obtained from experiments on two datasets—JetClass, rep-
resenting unlabeled data, and Top Tagging, serving as labeled simulation data—show
significant improvements in data efficiency, computational efficiency, and overall perfor-
mance. These findings suggest that SSL can greatly enhance the adaptability of ML
models to the HEP domain. This work opens new avenues for the use of unlabeled data
in HEP and contributes to a better understanding the potential of SSL for scientific
discovery.

1 Introduction
To enable precision measurements of the standard model (SM) and searches for new physics at the CERN
LHC, physicists train machine learning (ML) models using detailed, labeled simulations of proton-proton
collisions for a variety of tasks including triggering [1, 2], charged particle tracking, calorimetry [3],
particle-flow reconstruction [4], and jet tagging [5, 6, 7] and mass regression. These trained ML models
are subsequently applied to real data. This paradigm is called supervised learning because it uses explicit
labels derived from simulation settings, e.g., whether a signal or background event is simulated.

However, a significant issue is ensuring that the performance of these ML models trained in simulation
translates to real data, especially when the conditions of the two settings are different. For example, data
often has a larger number of average simultaneous proton-proton interactions, known as pileup (PU),
run-dependent detector noise, and different trigger efficiencies than simulation. This general problem
of different conditions between the training setting and the inference setting has been studied in ML
and particle physics and is known as domain adaption [8, 9]. Typically, these differences are corrected



by applying data-simulation scale factors parameterized as a function of a small number of features.
Nonetheless, in recent searches for high-momentum Higgs boson production [10, 11], this scale factor
measurement and application can be a dominant source of systematic uncertainty.

In this paper, we propose to apply a generalized ML approach, in which models are first pretrained
on large quantities of unlabeled data and subsequently adapted or finetuned using smaller quantities of
labeled data for a specific downstream task. In the pretraining stage, models are trained to learn generic
representations of the input features. These representations can then be used to train a smaller, simpler
model in smaller quantities of simulation. Generally, pretraining is achieved through self-supervised
learning (SSL), in which portions of input data are masked, paired together, or augmented and the
model is tasked to reconstruct the missing data, find matching pairs, or identify data augmentations,
respectively. This forces the model to learn the context of and correlations among elements in the data.
The specific approach we take in this paper is contrastive learning, in which multiple views of the same
data are input to the model, and the model learns common representation. In our case, the algorithm’s
inputs are the original jets and their augmented versions.

There are two primary objectives of this approach:

1. To demonstrate gains in performance in the smaller labeled dataset by pretraining on larger unla-
beled dataset.

2. To demonstrate the effect of scaling up the sizes of the large unlabeled dataset on the performance
of SSL models.

By applying this strategy to particle physics, we can simultaneously (1) leverage copious amounts of
unlabeled real data for training, (2) ensure that model performance transfers between the two domains of
data and simulation seamlessly, and (3) potentially build more generalizable, transferable, and powerful
ML models that accelerate scientific discovery.

This framework, sometimes referred to as the foundation model (FM) [12] approach, has powered
major advances in natural language processing, computer vision, audio/video processing, and learning
across these different modalities of data. These FMs, e.g., GPT-3 [13], are often large with up to
O(109) parameters, trained on massive unlabeled data sets, serve as powerful backbones that extract key
information from data, and can be adapted for different downstream tasks.

Related work includes using self-supervision for jet tagging [14], resimulation based SSL [15], masked
particle modeling [16], and generative pretraining [17]. These studies have laid the groundwork for
developing foundation models tailored to the unique challenges of LHC physics, highlighting the potential
of various pretraining techniques. However, to fully harness the capabilities of a foundation model, it
is crucial to demonstrate its ability to utilize the vast, mostly untapped amounts of unlabeled data
produced by the LHC. Our study focuses on this critical aspect by progressively increasing the size of
the pretraining dataset and assessing the resultant performance enhancements, thereby underscoring the
model’s scalability and effectiveness in leveraging large-scale unlabeled data. Our software is available at
https://github.com/JavierZhao/JetCLR/tree/JetClass.

This paper is organized as follows. Section 2 describes the chosen datasets and how we use them
to represent real data and simulation, respectively. Section 3 describes the pretraining objective and
training process we employ. Section 4 discusses our finetuning stage. The results are presented in
Section 5. Finally, Section 6 provides a summary and outlook.

2 Datasets and experimental setup
2.1 Datasets
In this study, we used two datasets: JetClass [7, 18], a large dataset with 100 million jets that stands in
for unlabeled data, and Top Tagging [19, 20], a smaller dataset with 1.2 million jets that stands in for
labeled simulation.

The JetClass dataset contains ten distinct classes of jets, each corresponding to a unique particle
decay channel, making it suitable to serve as a pretraining dataset. The background jets are initiated
by gluons and quarks (q/g). The signal classes include five decay channels of the Higgs boson (H → bb,
H → cc, H → gg, H → 4q, and H → ℓνqq′); two decay channels of the top quark (t → bqq′ and t → bℓν);
and the W and Z bosons decaying into a pair of quarks (W → qq′ and Z → qq).

The Top Tagging dataset only contains two classes of jets: top quark jets and QCD background jets,
making it suitable for a downstream classification task.

https://github.com/JavierZhao/JetCLR/tree/JetClass


2.2 Experiment setup
For both the JetClass dataset and the Top Tagging dataset, we used six particle-level kinematic features
as inputs, described in Table 1. We use the “raw” η and ϕ instead of the relative ∆η and ∆ϕ. The
reason is that as part of our contrastive learning approach, we augment the jets by translating the η
and ϕ coordinates of the individual particles. The relative ∆η and ∆ϕ would be invariant under this
augmentation because all particles would have been shifted by the same amount.

Variable Definition
η pseudorapidity
ϕ azimuthal angle
log pT logarithm of the particle’s transverse momentum pT
logE logarithm of the particle’s energy
log(pT/p

jet
T ) logarithm of the particle’s pT relative to the jet pT

log(E/Ejet) logarithm of the particle’s energy relative to the jet energy

Table 1: Particle input kinematic features used in training [7]

3 Self-supervised pretraining
Our pretraining strategy draws on the innovative framework of JetCLR [14], which introduces a con-
trastive learning paradigm specifically tailored for jet tagging. Instead of using only 3 particle input
features (pT, η, ϕ) as in JetCLR, we took advantage of more features, as described in Section 2.2.

Central to the JetCLR approach, and by extension to our methodology, are the concepts of alignment
and uniformity: bringing representations of similar jets—both augmented and original—closer together
while distancing those of dissimilar jets.

3.1 Augmentations
To generate the positive pairs, we employed the same augmentation techniques as those detailed in
the JetCLR framework [14]. These augmentations are visualized in Fig. 1, which shows the angular
distribution of jet particles, with the size of each marker being indicative of the particle’s transverse
momentum.

Figure 1: Illustration of the augmentations

3.2 Training details
To encode the input jets into representations, we used a transformer encoder [21] with hyperparameters
specified in Table 2.

In order to efficiently pretrain on a large number of jets, we made several optimizations to the existing
code base from [14] to speed up the pretraining. First, we removed unnecessary CPU-GPU synchroniza-
tions, especially read-out from GPU for the purpose of recording losses. In our optimized code base, this
is done asynchronously to avoid synchronization barriers. We also modified the default model dimensions
to be multiples of 8 in order to make use of CUDA matrix multiplication kernels more efficiently. In
addition, we fused point-wise operations into a single CUDA kernel when computing the contrastive loss.
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Figure 2: Comparison of the training performance of the pretrained model and the model trained from
scratch

Last but not least, we utilized the Automatic Mixed Precision (AMP) package from PyTorch [22] to run
certain parts of pretraining with lower precision, reducing memory usage and improving computational
speed without significantly impacting the accuracy of results. We used gradient clipping with a maximum
norm of 0.1 and set the ϵ parameter to 10−4 in the Adam optimizer, in order to mitigate the numerical
instability issues caused by the use of AMP. These settings help control the scale of gradients, preventing
them from becoming too large, which can lead to numerical instability during training. These optimiza-
tions have improved our training speed significantly, by a factor of 3, compared with the original JetCLR
implementation, with little impact on performance.

Hyperparameter Value
model (embedding) dimension 1024
feed-forward hidden dimension 1024
output dimension 1024
Self-attention heads 4
Transformer layers 4
Layers 2
dropout rate 0.1

Table 2: Hyperparameters of the transformer encoder.

4 Supervised finetuning
In the finetuning phase, we aim to preserve the rich, pretrained representations by appending only a
single linear layer to the encoder, as opposed to a more elaborate multi-layer perceptron (MLP). The
rationale behind this decision was to prevent a sophisticated classifier from diluting the robust features
that had been learned during the pretraining stage.

During finetuning, we do not freeze the transformer encoder: both the encoder and the newly added
linear layer are subject to training. This allows for the fine adjustment of the features, ensuring that the
encoder representations can adapt to the nuances of the task at hand while leveraging the generalizable
knowledge acquired during pretraining. This guides the model to maintain its powerful representational
ability while also becoming more specialized for the targeted application.

5 Results
5.1 Transfer learning: From JetClass to Top Tagging
To demonstrate the generalizability and transferability of the features learned during the pretraining
state, we pretrained a model on 1 million unlabeled jets from the JetClass dataset and then finetuned
it on a certain number of labeled jets from the Top Tagging dataset. Fig 2 shows that despite the
limited data, the pretrained model (blue curve) achieves higher accuracy and converges faster than the
one trained from scratch (red curve).

To further quantify the advantages of pretraining, we compared the performances of the pretrained
model against that of a counterpart initialized without pretraining. Figures 3 and 4 show the accuracy and



rejection rates plotted against varying quantities of labeled training data, which show that the pretrained
model consistently outperforms its from-scratch-trained counterpart. This is apparent not only in terms of
accuracy but also in the efficiency of rejecting false positives. As the volume of finetuning data increases,
an improvement is noted for both models. However, the pretrained model achieves superior performance
with a markedly smaller dataset—a clear testament to the pretraining phase’s value.

Additionally, the pretrained model demonstrates faster convergence, which is highlighted in Fig. 5
comparing the number of epochs required to approach the final accuracy within a 1% margin. Illustrated
by the blue line in the graph, the pretrained model reaches the convergence threshold in fewer epochs
over the entire span of labeled data presented, suggesting an optimized training that capitalizes on the
learned features during pretraining to accelerate overall convergence.

5.2 Demonstrating the power of dataset scaling through pretraining on different amounts of jets
To demonstrate the effectiveness of dataset scaling, we progressively increased the size of our pretraining
dataset from 1 million jets to 5 million and finally to 10 million jets. We then analyzed the outcomes of
models pretrained on these varying dataset sizes. As illustrated in Figs. 3 and 4, the results show a clear
trend: larger pretraining datasets significantly enhance model performance in terms of both rejection
power and accuracy. Here, ’rejection power’ refers to the model’s ability to accurately reject background
samples while correctly identifying signal samples. In addition to enhancing model performance, larger
pretraining datasets also allow the model to converge more quickly during finetuning. As depicted in
Fig. 5, as the sizes of the pretraining dataset grows, the number of epochs required to reach the final
accuracy with a 1% margin decreases across the range of labeled training samples used for finetuning.
These results demonstrate the feasibility of a foundation model that leverages the vast amounts of un-
labeled data produced by the LHC. This approach highlights the potential of using extensive, unlabeled
datasets to enhance model capabilities significantly. By training on increasingly larger datasets, we can
tap into deeper insights and detect subtle patterns that are not apparent in smaller datasets.
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Figure 3: Background rejection at 50% signal effi-
ciency of different training strategies as a function
of labeled training samples
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Figure 4: Accuracy of different training strategies
as a function of labeled training samples
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Figure 5: Number of epochs required to reach within 1% of the final accuracy of different training
strategies as a function of labeled training samples



6 Summary and outlook
In our study, we were able to show that

1. Through contrastive learning, a vanilla transformer encoder was able to learn useful representations
of jets from unlabeled data.

2. By pretraining on unlabeled data, the transformer encoder was able to learn the downstream task
faster and with fewer labeled training samples, compared with one we trained from scratch.

3. By scaling up the pretraining dataset, the model demonstrated enhanced performance and faster
convergence, achieving higher accuracy and rejection rates with increased volumes of unlabeled
data.

Through large-scale pretraining followed by finetuning, our SSL approach has demonstrated enhanced
data efficiency—requiring fewer labeled training samples to achieve superior performance compared to
the fully supervised approach. Additionally, it offers greater computational efficiency by enabling
the model to converge significantly faster than its fully supervised counterpart. This paves the way for
the use of unlabeled data in HEP and contributes to a better understanding the potential of SSL for
scientific discovery.
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