

Institute of High Energy Physics Chinese Academy of Sciences

Offline filter of data with abnormal high voltage at BESIII drift chamber

Zeheng Zhang, Linghui Wu, Qiumei Ma, Liangliang Wang, Huaimin Liu

wulh@ihep.ac.cn

Institute of High Energy of Physics, Chinese Academy of Sciences

ACAT 2024 Stony Brook University, Long Island NY Mar 14, 2024

BESIII@ Beijing Electron Positron Collider II (BEPCII)

Rich BESIII Physics Program

- Light hadron physics
- Charmonium physics
- R values, QCD and τ physics
- Charm Physics
- Exotic Decays and New Physics

BESIII publications (May 9, 2023)

Unique dataset: high statistics and clean environment

BESIII detector

- Multilayer Drift Chamber (MDC)
 - spatial resolution: $115 \mu m$
 - σ_p/p=0.5%@1GeV
 - dE/dx resolution<6%
- TOF
 - $\sigma T = 68 ps$ for barrel
 - σT = 98/60 ps (before/after upgrade) for endcaps
- EMC: Csl crystal
 - σ E/E=2.5%@1GeV for barrel
 - σ E/E=5.0%@1GeV for endcaps
- Magnet
 - 1T superconducting
- Muon ID
 - 9 layers of RPC for barrel
 - 8 layers of RPC for endcaps

Multilayer drift chamber (MDC)

- An innermost sub-detector operating in 1T magnetic field
- Designed for tracking and dE/dx measurement
- Radius extension: 63mm ~ 810mm
- 6796 trapezoidal drift cells in 43 cylindrical layers
 - Inner chamber: 8 stereo layers
 - Outer chamber: 19 axial layers, 16 stereo layers
- Gas mixture: He+C₃H₈ (60/40)

Drift cell and High Voltage (HV) configuration

- Sense wire
 - ϕ 25 μm gold plated W
 - Connected to positive high voltage via feedthrough by CAEN HV power supplies
- Field wire
 - ϕ 110 μ m gold plated Al
 - kept at ground
- HV optimized to achieve the same gain in all layers

12 and 16.2mm for inner and outer chamber

Feedthroughs of wires

Slow control monitor of MDC HV

Stability of HV during operation

- Stable most of time during data taking
- Instability of HV due to serious beaminduced background may be caused by
 - Beam injection
 - Instability of beam

Slow control panel of MDC HV

Instability of HV during top-up injection

7

Impact of abnormal HV on dE/dx measurement

- Drop of HV can cause significant decrease in gain
- May cause wrong dE/dx measurement
- Has negative impact on PID

dE/dx measurement of a cell

For a drift tube:
$$\ln G = \frac{V \ln 2}{\ln(r_b/r_a)V_e} \left\{ \ln \frac{V}{pr_a \ln (r_b/r_a)} - \ln K \right\}$$
M.E. Rose and S.A. Korff
Phys. Rev. **59** (1941) 850Define M: $M = \frac{\ln 2}{\ln(r_b/r_a)V_e} \left\{ \ln \frac{V}{pr_a \ln (r_b/r_a)} - \ln K \right\}$ Approximately constant in proportional
region with small fluctuation in VSo $\frac{\Delta G}{G} = M\Delta V = MV_0 \frac{\Delta V}{V_0} = k \frac{\Delta V}{V_0}$ •Applicable to drift cell of the chamber
• V_0 : HV at the sense wire
• $k=MV_0$: approximately constant with
small fluctuation in HV

d*E*/dx measurement for a single cell: $(dE/dx)_{cell} \propto G$

Relative change of $(dE/dx)_{cell}$:

$$\frac{\Delta (dE/dx)_{\text{cell}}}{(dE/dx)_{\text{cell}}} = k \frac{\Delta V}{V_0} \qquad k$$

k =13.8 from previous prototype test

dE/dx measurement of the track

d*E*/dx measurement for a track:

$$(\mathrm{d}E/\mathrm{d}x)_{\mathrm{track}} = \frac{1}{N} \sum_{i=1}^{N} (\mathrm{d}E/\mathrm{d}x)_{\mathrm{cell},i}$$

Relative change:

$$\frac{\Delta (dE/dx)_{\text{track}}}{(dE/dx)_{\text{track}}} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{\Delta (dE/dx)_{\text{cell}}}{(dE/dx)_{\text{cell}}} \approx \frac{k}{N} \sum_{i=1}^{N} \frac{\Delta V_i}{V_i}$$

Define $R_{\rm f}$ to the average relative high voltage fluctuation over all layers

$$R_{\rm f} = \frac{1}{N} \sum_{i=1}^{N} \frac{\Delta V_i}{V_i}$$

Relation between dE/dx measurement and HV

- Approximate linear relationship between dE/dx change and R_f from Bhabha data samples
 - k = 15.8: 1% average drop in HV causes a 15.8% decrease in d*E*/dx measurement

dE/dx measurement vs R_f

Offline event filter

- Change in dE/dx measurement due to HV instability less than 10% requires |R_f|<0.6%
- In BESIII, the ratio of events with $|R_f| > 0.6\%$
 - Around 1% for all data since 2009
 - Up to more than 20% in some small data sets
- An approach for guaranteeing data quality: offline event filter

Workflow

- An algorithm to determine and validate the time window of HV drop developed
- Time windows saved to Calibration database
- Filter applied before reconstruction

dE/dx distribution w/o event filter

Events with abnormal HV removed effectively after offline event filter

- Instability of MDC HV due to serious beam-induced background has negative impact on dE/dx measurement
- Relationship between dE/dx measurement and HV fluctuation studied
- To guarantee data quality, an offline event filter software tool developed to remove events with abnormal HV

