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✦ Slightly less popular cousin of “text to image 
with Diffusion”

➡ Quite popular in CV

➡ Feels a bit under-utilized in Particle 
Physics
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Super Resolution with Diffusion
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Why Super Resolution in Particle Physics?



✦ Reconstruction quality depends on the detector granularity
➡ More granular -> better reconstruction
➡ Granularity puts a cap on theoretical reconstruction 
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✦ Reconstruction quality depends on the detector granularity
➡ More granular -> better reconstruction
➡ Granularity puts a cap on theoretical reconstruction 

capability

✦ High granularity detectors (simulations) are very expensive!
➡ Increasing resolution in post can be a solution!

✦ Graph super resolution is not a common problem in general
➡ Graphs are very natural in Particle Physics
➡ Hence Graph Super resolution
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Why Super Resolution in Particle Physics?



✦ COCOA mod (https://iopscience.iop.org/article/
10.1088/2632-2153/acf186/pdf)

✦ Shooting single electron as a starting point
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✦ Inspired by the SR3 paper

Image Super-Resolution via Iterative 
Refinement (https://arxiv.org/pdf/
2104.07636.pdf)
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Diffusion set up
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Diffusion set up
Low ResE

Interpolation

Conditional 
Input

E/4 E/4

E/4 E/4

De-noising with

Transformers (Masked attention)

σ σ

σ σ

E1 E2

E3 E4

Target 𝒩(0,I)
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https://arxiv.org/pdf/2104.07636.pdf
https://arxiv.org/pdf/2104.07636.pdf


9 N. KakatiWeizmann Institute of Science

Sneak peak into the results 
LR HR (pred)HR (target)
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De-noising
LR HR (pred)HR (target)

De-noising
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A more Interesting case!

HRLR

• Multiple particles 
• 1-5 particles 
• Electrons and photons
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A more Interesting case!

HRLR

• Multiple particles 
• 1-5 particles 
• Electrons and photons

example for demonstration

LR HR (pred)HR (target)



Is it 
hallucination?

Creating information out of nowhere?
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Where does the extra info come from?
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Where does the extra info come from?

✦ From training data!
➡ Energy deposition, by let’s say a photon, is not random
➡ Model can learn the HR distribution conditioned on the LR 

distribution

✦ HR output = Educated estimation of the model based on the 
patterns learned from the training data
➡ Similar to how SR work in Computer vision

SR3: https://arxiv.org/pdf/2104.07636.pdf

https://arxiv.org/pdf/2104.07636.pdf
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But, how do we still verify we are not hallucinating?
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✦ Qn: The model can predict “realistic looking” outputs, but are 
they correct?
➡ Ans: Of course they are not perfect, just like any other ML 

model

✦ How do we estimate how good/bad are the HR estimations?

✦ With simulation, 
➡ it’s easier, we can have the truth targets

✦ With actual data,
➡ Not so easy. (How much we trust our simulations?)
➡ Calibration problem (tricky, but I believe doable)
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But, most importantly,



Thanks!


