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Super Resolution with Diffusion

+ Slightly less popular cousin of “text to image
with Diffusion”

= Quite popular in CV

= Feels a bit under-utilized in Particle
Physics

Weizmann Institute of Science 2 N. Kakati



30 FPS (11-30)

PH#FO NIX

= Phoenix Menu




= Phoenix Menu

Animate camera

5 2 0" R oA @

d
1
)

S

30 FPS (0-31) m Q Q ° O:) € Q? @ 6 (ak El gg é



= Phoenix Menu

Animate camera

5 2 0" R oA @

d
1
)

S

30 FPS (0-31) m Q Q ° O:) € Q? @ 6 (ak El gg é



0 FPS (0-31)

PH#ENIX

= Phoenix Menu



Why Super Resolution in Particle Physics?
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Why Super Resolution in Particle Physics?

+ Reconstruction quality depends on the detector granularity
= More granular -> better reconstruction

= (Granularity puts a cap on theoretical reconstruction
capability
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= |ncreasing resolution in post can be a solution!
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Why Super Resolution in Particle Physics?

+ Reconstruction quality depends on the detector granularity
= More granular -> better reconstruction

= (Granularity puts a cap on theoretical reconstruction
capability

+ High granularity detectors (simulations) are very expensive!

= |ncreasing resolution in post can be a solution!

+ Graph super resolution is not a common problem in general
= (Graphs are very natural in Particle Physics

= Hence Graph Super resolution
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The SetUp

+ COCOA mod (https.//iopscience.iop.org/article/
10.1088/2632-2153/acf186/pdf)

+ Shooting single electron as a starting point
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The SetUp

LR HR

+ COCOA mod (https.//iopscience.iop.org/article/
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+ Shooting single electron as a starting point

HR
0.0 -
~0.1 -
~0.2 -
—0.3 -

-0.2 -0.1 0.0 0.1 0.2

Weizmann Institute of Science 7 N. Kakati


https://iopscience.iop.org/article/10.1088/2632-2153/acf186/pdf
https://iopscience.iop.org/article/10.1088/2632-2153/acf186/pdf
https://iopscience.iop.org/article/10.1088/2632-2153/acf186/pdf

The SetUp

LR HR
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The SetUp

LR HR
+ COCOA mod (https.//iopscience.iop.org/article/
10.1088/2632-2153/acf186/pdf) . _— .
+ Shooting single electron as a starting point
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Diffusion set up

+ Inspired by the SR3 paper

Image Super-Resolution via lterative

Refinement (htips./arxiv.org/pdf/
2104.07636.pdf)
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Diffusion set up

Low Res
+ Inspired by the SR3 paper

Image Super-Resolution via lterative

Refinement (https./arxiv.org/pdfl/
2104.07636.pdf)

l Interpolation

Conditional
Input
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Diffusion set up

Low Res
+ Inspired by the SR3 paper ‘
Image Super-Resolution via lterative |
Refinement (https://arxiv.org/pdf/ Interpolation
2104.07636.pdf)
X 00
e OO S4B Conditional
Q0 Input
Q0 E/4  E/4
4 )
00 O@®
o0 2 8 De-noising with o0 : 8
00 - Q@O
o0 Transformers (Masked attention) 0
Target N (0,1)
\_ _J
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Sneak peak into the results

ECAL1

ECAL2

ECALS3
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Sneak peak into the results
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HR (pred)
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De-noising

LR HR (target) HR (pred)
LR HR (target) pred
2.0 1 sum = 226 MeV 2.0 1 sum = 35 MeV 2.0 1 sum = 42 MeV
peak = 97 MeV peak = 25 MeV peak = 14 MeV
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- 1

1.4 A 1.4 - 1.4
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A more Interesting case!

LR HR
. .

 Multiple particles
e 1-5 particles
e Electrons and photons
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A more Interesting case!
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 Multiple particles
e 1-5 particles
e Electrons and photons

example for demonstration
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Where does the extra info come from?
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Where does the extra info come from?

+ From training data! 2.0 1
= Energy deposition, by let’s say a photon, is not random 1.8
= Model can learn the HR distribution conditioned on the LR 1.6 -

distribution .
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Where does the extra info come from?

+ From training data! 2.0
= Energy deposition, by let’s say a photon, is not random 1.8 1
= Model can learn the HR distribution conditioned on the LR 1.6 -

distribution .

+ HR output = Educated estimation of the model based on the
patterns learned from the training data
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1 sum = 16022 MeV
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-

N. Kakati



Where does the extra info come from?

LR HR (target)

NI .0 - = 2.0 1 = 15926 MeV

+ From training data! O e e e Deak = 9482 MeV

= Energy deposition, by let’s say a photon, is not random 1.8 - F 1.8 - _'
. . . . B =
= Model can learn the HR distribution conditioned on the LR 161 1.6 -
distribution ‘
1.4 - 1.4
02 00 0.2 02 00 0.2

+ HR output = Educated estimation of the model based on the
patterns learned from the training data

Input

Reference
= Similar to how SR work in Computer vision '

SR3: https.//arxiv.org/pdi/2104.07636.pdf
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But, how do we still verify we are not hallucinating?
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But, how do we still verify we are not hallucinating?

+ Qn: The model can predict “realistic looking” outputs, but are

they correct?
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But, how do we still verify we are not hallucinating?

LR HR (target)
. P T tot ' ” 2.0 - = 16022 MeV 2.0 1 sum = 15926 MeV
+ Qn: The model can predict “realistic looking” outputs, but are ey Seak = 9482 MeV
they correct? s 1.8
= Ans: Of course they are not perfect, just like any other ML e E L6 - I
model
1.4 - 1.4 7
02 00 0.2 02 00 02
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LR HR (target)
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they correct?
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= Ans: Of course they are not perfect, just like any other ML e - e C
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1.4 - 1.4 -

+ How do we estimate how good/bad are the HR estimations?
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But, how do we still verify we are not hallucinating?

LR HR (target)
. P T tot ' ” 2.0 = 16022 MeV 2.0 1 sum = 15926 MeV
+ Qn: The model can predict “realistic looking” outputs, but are ey Seak = 9482 MoV

they correct?

1.8 1.8 '-
= Ans: Of course they are not perfect, just like any other ML e * L6
model
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+ How do we estimate how good/bad are the HR estimations?

+ With simulation,

= |t’s easier, we can have the truth targets

+ With actual data,

= Not so easy. (How much we trust our simulations?)
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But, how do we still verify we are not hallucinating?

LR HR (target)
. P T tot ' ” 2.0 = 16022 MeV 2.0 1 sum = 15926 MeV
+ Qn: The model can predict “realistic looking” outputs, but are ey Seak = 9482 MoV

they correct?

1.8 1.8 '-
= Ans: Of course they are not perfect, just like any other ML e * L6
model

1.4 1.4 1

+ How do we estimate how good/bad are the HR estimations?

+ With simulation,

= |t’s easier, we can have the truth targets

+ With actual data,
= Not so easy. (How much we trust our simulations?)

= (Calibration problem (tricky, but | believe doable)
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But, most importantly,
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But, most importantly,

+ We shouldn’t look at it in isolation
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But, most importantly,

+ We shouldn’t look at it in isolation

+ Primary goal -

= Assist downstream reconstruction task
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But, most importantly,

LR HR (target)
+ We shouldn’t look at it in isolation 0.07 sum = 83863 MeV 0.0 1 sum = 82805 MeV
peak = 40998 MeV peak = 34028 MeV
—0.2 - —0.2 -
+ Primary goal - —0.4 1 —0.4 - e
= Assist downstream reconstruction task —0.6 - ~0.6 - .
—0.8 - —0.8 -
= Multi-particle example demonstrates cardinality -1.0 0.5 1.0 0.5
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= Multi-particle example demonstrates cardinality -1.0 0.5 1.0 0.5

= Plenty more to look at (ongoing study)
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= Paper coming soon...
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Thanks!



