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NNs in HEP experiments 3 Fermilab

* Neural Networks are a crucial a component in our effort to find BSM physics

- ldentifying different decays from Standard Model
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NNs in HEP experiments aF Fermilab

* Neural Networks are a crucial an tool to find physics beyond SM (BSM)
- ldentifying different decays from Standard Model

- Even finding “anomalous decays” from BSM

—
——

W/Z/h

Classification

. Need to be Robust for high sensitivity and avoid false discovery 2?77

- How to adapt it for classification and anomaly detection ? Anomaly detection
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What is it ? 4= Fermilab
* NN trained to classify cows vs penguins

Prevent learning this !

Needs to learn this !
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What is it ? 2t Fermilab

* Lets say we train a algorithm(NN) to identify cows vs penguins

Cows typically in

Penguins typicall
grassland backdrop & ypically

Photographed in snow

* What about pictures of cows on snow !

- Robust Classifier

+ Can it predict if this is neither of them ?

* Robust Anomaly Detection
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e 2
NNs in HEP experiments 3 Fermilab

* Neural Networks are a crucial an tool to find physics beyond SM (BSM)
- ldentifying different decays from Standard Model

- Even finding “anomalous decays” from BSM

- Need to be Robust for high sensitivity and avoid false discovery
- NNs are also very important in data acquisition and processing pipelines
- Strict inference time / latency and resource constraints

- Need to be fast and efficient
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2= Fermilab

2 A model with strong/

Robustness w/ Inductive bias

~_ Amodel with weak
' inductive biases

e

- We can make NNs robust with inductive bias
* Design the model with physics knowledge

- Explicit Inductive bias to make models robust
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Robustness w/ Inductive bias

* We can make NINs robust with inductive bias
Design the model with physics knowledge

Explicit Inductive bias to make models robust

Encoding Lorentz invariance into the NINs

Example: Lorrentz Net (arxiv:2201.08187)

- Strong invariance, but resource intensive

~___— Amodel with weak
inductive biases

2= Fermilab

hl+1 xl+1

Lon | Lo |

S MLP (] Sum Pooling ) Minkowski Norm &

Inner Product

Lorentz Group Equivariant Block (LGEB)

Problem: How do we make models w/ inductive lighter and faster !
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Robustness w/ Inductive bias 3¢ Fermilab
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__— A model with weak
/d modadel with we.

* We can make NINs robust with inductive bias
Design the model with physics knowledge

Explicit Inductive bias to make models robust

Encoding Lorentz invariance into the NINs

(o) o)

Example: Lorrentz Net (arxiv:2201.08187) e

- Strong invariance, but resource intensive
S MLP (] Sum Pooling @ Minkowski Norm &

Inner Product

Lorentz Group Equivariant Block (LGEB)

Problem: How do we make models w/ inductive lighter and faster !

» Solution: Transfer the inductive bias to a smaller model w/ Knowledge distillation
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L, 3 =
Knowledge distillation 3¢ Fermilab

KD: “Transferring knowledge from a larger complex model to smaller simple model”
Proposed in arXiv:1503.0253 | by Hinton et. al

Uses the soft targets; probability distributions over classes from teacher model
Conveys rich information about class relationships aiding in knowledge transfer

Shared insights from teacher helps in faster convergence
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* =
Transferring Inductive Bias 3 Fermilab

» Teacher: Lorentz Net Group equivariant graph neural network

* Designed to w/ Lorentz Invariant message passing

+ Student Networks:
+ DeepSet: 3 layer X 128 dim. wide FCN for p and ¢ networks

- MLP w/ flat inputs : 3 layer X 512 hidden features

- Trained on top tagging dataset

» Classifying QCD vs top jets [Study the effect of KD]

- Augmented training data with boosted jets by [Study transfer of inductive Bias]
sampled from [0,5, .| with only KD loss

Abhijith Gandrakota 12
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Results

- Training with knowledge distillation leads to
better accuracy and performance

* In the case of MLP, we see |.75x improvement in
BKG rejection, compared to training from scratch

* While reducing FLOPs by 640x !!

- We observe that KD can transfer the inductive bias
to the student !

#params FLOPs Accuracy AUC Rejso,  Rejsoq

DeepSet from scratch 0.930 0.9808 747 219
DeepSet KD T =1 0.932 0.9818 926 241
DeepSetKDT =3 02K L6TM 593 09819 970 255
DeepSet KD T' = 5 0.932 0.9819 970 248
MLP from scratch 0.904 0.9663 256 82

MLPKDT =1 0914 09726 375 119
MLPKD T = 3 SZIK - 529K 0018 09751 483 144
MLPKDT =5 0.919 0.9750 503 146
LorentzNet (teacher) 224K 339M 0.942 0.9868 2195 498

Ryan. L, AG, Jennifer. N, et al [Neurips 2023,2311.14160 ]
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2= Fermilab

How about anomaly detection ?

How to make it Fast and Robust ?
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* =
How about anomaly detection ! 3 Fermilab

Predominantly anomaly detection in HEP uses density estimation;
e.g Autoencoders

Encode input into a latent space; examine reconstruction errors post decoding
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- Typically need both encoder and decoder parts of network to get anomaly metric

- How do we make it fast and robust ?
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Robust anomaly detection at LHC 3¢ Fermilab

* Learning from SM QCD jets to identify any BSM decays

* More likely that these jets have lower mass

More likely

v

é

Q/g

“Rarer jets”

Jet Mass

\J/

Quark or Gluon Jet

- If ML algorithm learns jet mass, it could just label high mass jets as anomalous
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Robust anomaly detection at LHC 3¢ Fermilab

* Learning from SM particle jets to identify any BSM decays

* More likely that these jets have lower mass

What if BSM particle

/\ is low in mass ?
\ “Rarer jets”

Quark or Gluon Jet ——

Jet Mass

é

Q/g

- If ML algorithm learns jet mass, it could just label high mass jets as anomalous

* We could make wrong calls, may also create signs of artificial resonances

- Need to teach network what is important and what to not to focus on

Abhijith Gandrakota 17



L, 3 n
Robust representations 3¢ Fermilab

* Learning from QCD and W/Z jets, can detect top quark decays as outliers ?

Q/9

h/W/Z-qq t—-UJg—qqq

- ldea: Use different decay examples to capture underlying physics

» Train a classifier on MC (labeled data) = obtain representations
» Avenue to learn what’s important [~ minimal hand holding]

» Build representations to have maximum information with the labels

* Ensure representations do not vary w/ nuisances (Zhang et al. 2022, Puli et al. 2022).
- This way, we can maximize only the relevant physics information

Abhijith Gandrakota 18



* ™
Nuisance Randomized Distillation a Fermilab

» For out dataset we have input features (X), labels for decays (Y), and Nuisance (Z)

- Nuisance Randomized Distillation:

| : Avoid learning nuisance: break the dependence b/n label and nuisance.

- Use importance weights w to break dependence.

- 1l : Build representations that do not vary with the nuisance
- Intuitively, it shouldn’t be possible to distinguish b/n [ Joint independence]
(v, Y, Z) vs (ry, Y, randomized nuisance(Z))

Enforce joint independence

- Use the representations to detect anomalies.

[1] Puli et al. 2022 Abhijith Gandrakota 19
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* ™
Nuisance Randomized Distillation 3¢ Fermilab

» Building out representation:
- Start with a simple classifier b/n different particle decays

- CNNs w/ final dense layers output to logits / softmax probabilities

102
X: Inputs w0
10°
Q. o 107!
0 2 550 T 1072
o An
Classifier Detector images

r(x): N-1 Layer

I

Output

Representation (7y)
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* ™
Nuisance Randomized Distillation 3¢ Fermilab

- Penalize mutual information
* Input (ry, Y, [Z, Z]) to critic model (@), a simple MLP

- Approximates the mutual information, use this to penalize the loss

X: Inputs
- Critic is trained to differentiate
@ Z: Nuisance,Y: label (re Y, Z) vs (1, Y, Z)
Classifier » Critic model is updated for
every batch of the classifier
r(x): N-1 Layer training

\r(X),Y,[Zi]/ * It is proxy as the likelihood

Output Critic approximator

Abhijith Gandrakota 21



* ™
Nuisance Randomized Distillation 3¢ Fermilab

» Training

- Train and update critic model for every batch of classifier training

X: Inputs
- Critic is trained to differentiate
@ Z: Nuisance,Y: label (re Y, Z) vs (1, Y, Z)
Classifier » Critic model is updated for
every batch of the classifier
r(x): N-1 Layer training

\r(X),Y,[Zi]/ * It is proxy as the likelihood

Output Critic approximator

Pylry: Y. [Z,2]) >

L =w CE(Ypred’ Ytrue) —4 log

Abhijith Gandrakota 22



* ™
Nuisance Randomized Distillation 3¢ Fermilab

» Training

- Train and update critic model for every batch of classifier training

X: Inputs
@ Z: Nuisance,Y: label 250 e F
[ Top [OOD] -
o 2.0F -
Classifier c
| 5 1.5F .
r(x):N-I Layer | s |
/ © 1.0F i
N s |
\r(x),Y, [Z,7 ]/ § 0.5} N
Output Critic 0.0 ]
:
p¢(rX7 Y,[Z,7]) Represntation dim. #1
P =w CE(Yp,,ed, Y,..) —Alog =,
R
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* ™
Nuisance Randomized Distillation 3¢ Fermilab

+ OOD Detection:
» Outlier Dataset: Top quarks jets

- Use representations to build anomaly metrics

X: Inputs * Metrics:
: + Calculate the distance from
Z: Nuisance, Y: [abel samples in representation space

Classifier dy = (ry = Hy) ZZI (ry — ﬂA)T

r(x): N-1 Layer

- Obtain distance from all BKG

N samples
\r(x),Y, [ Z7Z ]/

* Here: [dQCD’ dWZ]

Output Critic
pys(rx. Y. [Z, VA) - Use this to find anomalies
Zz=w CE(Ypred’ Ytrue) — 4 log
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Nuisance Randomized Distillation
- OOD Detection:

» Outlier Dataset: Top quarks jets

- Use representations to build anomaly metrics

X: Inputs

L

Z: Nuisance,Y: label

Classifier

r(x): N-1 Layer

4

Output

L =w (CE(Ypmd, Y, ..) —Alog

r().Y,[Z,Z]
Critic

p¢(rx, Ya [Za Z]) )

Abhijith Gandrakota

2= Fermilab

- Metrics:

- Obtain distance d, from all BKG
samples

* Hel"eI [dQCD’ dwz]

- Alternative Metrics:

+ Max(Logits) also serves as a OOD
Score

¢ MaX Logits (OOD) < MaX Logits (BKG)

25



2= Fermilab

Results
-+ Obtained representations denotes the diversity 2 ]
of what is typical of )
* While keeping relevant info for anomaly S ]
detection g :
5
» Achieves this while staying decorrelated with ° ~ Max Mahalanobis Distance |
kinema‘tics Of the ]et 0.0 — i\/ajr)i(ats)gr:gsl Autoencoder |
00 02 04 06 08 10
True Positive Rate
Method AUC 1 JsD ! Sig. Imp. 1 003 1 i QD MasDist -
- i [ After NuRD-MD selection
VAE 0.88 0.065 2.03 0.0305_ i_i [ After VAE selection - f
NuRD-MD 0.90 0.013 2.47 V After NuRD-ML selection :
NuRD-ML 0.91 0.027 232 2o ]
= 0.020f- .
+ Can be applied on various use cases, Eoonf ;
. - g =z | L. 1
e.g: Domain adaptation oo ]
0.0053— H —
- Easy way to teach NNs physics ; R S S ]
T R T RS - R R R 1
Mass [GeV]

AG, Lily.Z, Aahlad.P, Jennifer. Net al [Neurips 2023, 2401.08777] Abhijith Gandrakota 26
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* ™
Summary 2¢ Fermilab

+ Fast, Efficient and Robust NNs are crucial for uncovering BSM physics

» Friendly for use in various computing architectures

+ Knowledge Distillation can simplifies model architectures for various use cases

» Enables transfer of inductive bias from a capable teacher

* New take on building a representation space to detect anomalies

- NuRD, w/ joint independence, maximize performance while decorrelating
nuisances

- Results in smaller and robust models

- Check out for further details: arxiv:2311.14160, arxiv:2311.17162, arxiv:2401.08777
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Thank you !



3 .
Efficient DeepSet auto encoder a Fermilab

+ Permutation invariant architecture \ <
——— 4
=|'
* DeepSet / Transformer encoder
A T ‘ '/‘s‘ ’/‘ /!
. . . Kinematics /// //// Kinematics ““ “J 353 ,/,/”,’/ / /'4//"/
Chamfer loss as reconstruction objective ,,H( 1 CEET e prerrey
- KLD and / or Reco loss as AD score O
CLIP-VAE: o T
GO Jet type
_g 0.6? — H-bb
Avoid over-regularization for the 3 | e T
o — H-4 .
poorly reconstructed samples T — Haag
|: — Z-qq
0.2 ] t"ibgg I
* Prevent back-propagation of KLD term i g )|
80 02 02 06 08 10
Model Profile Signal efficiency (%) at Rej = 100

#params FLOPs H — 4q H —bb H — cc H — gg H—qql W —qq Z — qq t—bl t— bgq

DeepSet w/ PID 103K 6.95M 58+21 51+£12 52+11 04+£01 35+3 3506 33+£06 538 22+5
DeepSet w/o PID ) 1.0+£02 22402 6305 02+01 19+1 60+£06 52+05 49+2 4+1
Transformer w/ PID 952K 78.9M 65+08 40£09 49+£07 0501 43+t4 3.8+03 33£03 58+5 19+£1
Transformer w/o PID ' 3108 22+£03 5706 03+£01 23+3 5609 50+£06 41+3 11+£1
N-subjettiness N/A N/A 0.6 1.9 5.0 0.2 19 4.1 3.5 31 8.8

Ryan. L, AG, Jennifer. N, et al [Neurips 2023,2311.14160 ] Abhijith Gandrakota 29


https://arxiv.org/pdf/2311.14160.pdf

