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Abhijith Gandrakota

NNs in HEP experiments
• Neural Networks are a crucial a component in our effort to find BSM physics

• Identifying different decays from Standard Model
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• Identifying different decays from Standard Model
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NNs in HEP experiments
• Neural Networks are a crucial an tool to find physics beyond SM (BSM)

• Identifying different decays from Standard Model

• Even finding “anomalous decays” from BSM 

• Need to be Robust for high sensitivity and avoid false discovery

• How to adapt it for classification and anomaly detection ?
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What is it ?
• NN trained to classify cows vs penguins
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Prevent learning this !
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What is it ?
• Lets say we train a algorithm(NN) to identify cows vs penguins 

 
 

• What about pictures of cows on snow ?

• Robust Classifier

• Can it predict if this is neither of them ?

• Robust Anomaly Detection
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NNs in HEP experiments
• Neural Networks are a crucial an tool to find physics beyond SM (BSM)

• Identifying different decays from Standard Model

• Even finding “anomalous decays” from BSM 

• Need to be Robust for high sensitivity and avoid false discovery

• NNs are also very important in data acquisition and processing pipelines

• Strict inference time / latency and resource constraints

• Need to be fast and efficient  
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Robustness w/ Inductive bias
• We can make NNs robust with inductive bias

• Design the model with physics knowledge

• Explicit Inductive bias to make models robust
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Robustness w/ Inductive bias
• We can make NNs robust with inductive bias

• Design the model with physics knowledge

• Explicit Inductive bias to make models robust 
 

• Encoding Lorentz invariance into the NNs

• Example: Lorrentz Net (arxiv:2201.08187) 

• Strong invariance, but resource intensive

• Problem: How do we make models w/ inductive lighter and faster ?
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Robustness w/ Inductive bias
• We can make NNs robust with inductive bias

• Design the model with physics knowledge

• Explicit Inductive bias to make models robust 
 

• Encoding Lorentz invariance into the NNs

• Example: Lorrentz Net (arxiv:2201.08187) 

• Strong invariance, but resource intensive

• Problem: How do we make models w/ inductive lighter and faster ?

• Solution: Transfer the inductive bias to a smaller model w/ Knowledge distillation
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Knowledge distillation
• KD:  “Transferring knowledge from a larger complex model to smaller simple model”

• Proposed in arXiv:1503.02531 by Hinton et. al

• Uses the soft targets; probability distributions over classes from teacher model

• Conveys rich information about class relationships aiding in knowledge transfer

• Shared insights from teacher helps in faster convergence

• Loss : 

•

•  :  Truth labels

• :  Student predictions

• :  Soften predictions 

LKD(q; p, y) = (1 − λ)ℋ(y, q) + λDKL(q̃∥p̃)

y

q

p̃ ( =
es(x) /T
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Transferring Inductive Bias
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• Teacher: Lorentz Net Group equivariant graph neural network  

• Designed to w/ Lorentz Invariant message passing 

• Student Networks:

• DeepSet: 3 layer X 128 dim. wide FCN for  and  networks

• MLP w/ flat inputs : 3 layer X 512 hidden features  

• Trained on top tagging dataset

• Classifying QCD vs top jets                                     [Study the effect of KD]

• Augmented training data with boosted jets by        [Study transfer of inductive Bias]  
sampled from  with only KD loss

ρ ϕ

β
[0,βmax]
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Results
• Training with knowledge distillation leads to  

better accuracy and performance

• In the case of MLP,  we see 1.75x improvement in 
BKG rejection, compared to training from scratch

• While reducing FLOPs by 640x !!

• We observe that KD can transfer the inductive bias 
to the student !
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How about anomaly detection ?
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How to make it Fast and Robust ?
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How about anomaly detection ?
• Predominantly anomaly detection in HEP uses density estimation;  

e.g Autoencoders

• Encode input into a latent space; examine reconstruction errors post decoding 
 
 
 

• Typically need both encoder and decoder parts of network to get anomaly metric

• How do we make it fast and robust ?
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Robust anomaly detection at LHC
• Learning from SM QCD jets to identify any BSM decays

• More likely that these jets have lower mass 

• If ML algorithm learns jet mass, it could just label high mass jets as anomalous   
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Robust anomaly detection at LHC
• Learning from SM particle jets to identify any BSM decays

• More likely that these jets have lower mass 

• If ML algorithm learns jet mass, it could just label high mass jets as anomalous   

• We could make wrong calls, may also create signs of artificial resonances 

• Need to teach network what is important and what to not to focus on
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Quark or Gluon Jet
Jet Mass

What if BSM particle 
is low in mass ?

“Rarer jets”
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Robust representations
• Learning from QCD and W/Z jets, can detect top quark decays as outliers ?

• Idea:  Use different decay examples to capture underlying physics 

• Train a classifier on MC (labeled data)  obtain representations 

• Avenue to learn what’s important [~ minimal hand holding]

• Build representations to have maximum information with the labels 

• Ensure representations do not vary w/ nuisances (Zhang et al. 2022, Puli et al. 2022).

• This way, we can maximize only the relevant physics information

⟹

18



Abhijith Gandrakota

Nuisance Randomized Distillation
• For out dataset we have input features (X), labels for decays (Y), and Nuisance (Z)

• Nuisance Randomized Distillation:

•  I : Avoid learning nuisance: break the dependence b/n label and nuisance.

• Use importance weights  to break dependence.

• II : Build representations that do not vary with the nuisance

• Intuitively,  it shouldn’t be possible to distinguish b/n       [ Joint independence]

•  ( ,  Y,  Z) vs ( ,  Y,  randomized nuisance( ))

• Enforce joint independence

• Use the representations to detect anomalies.

w

rX rX
̂Z

19[1] Puli et al. 2022
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Nuisance Randomized Distillation
• Building out representation:

• Start with a simple classifier b/n different particle decays

• CNNs w/ final dense layers output to logits / softmax probabilities 

20

Classifier

X: Inputs

Output

r(x): N-1 Layer Representation ( )rX

Detector images
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Nuisance Randomized Distillation
• Penalize mutual information

• Input  to critic model , a simple MLP

• Approximates the mutual information, use this to penalize the loss

(rX, Y, [Z, ̂Z]) (ϕ)
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Classifier

X: Inputs

Output

r(x): N-1 Layer

Critic

Z: Nuisance, Y: label

r(x), Y, [ Z, Ž ] 

• Critic is trained to differentiate  
( ,  Y,  Z) vs ( ,  Y, )

• Critic model is updated for 
every batch of the classifier 
training

• It is proxy as the likelihood 
approximator

rX rX
̂Z
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Nuisance Randomized Distillation
• Training

• Train and update critic model for every batch of classifier training
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Classifier

X: Inputs

Output

r(x): N-1 Layer

Critic

Z: Nuisance, Y: label

r(x), Y, [ Z, Ž ] 

ℒ = w (CE(Ypred, Ytrue) − λ log
pϕ(rX, Y, [Z, ̂Z])

1 − pϕ )

• Critic is trained to differentiate  
( ,  Y,  Z) vs ( ,  Y, )

• Critic model is updated for 
every batch of the classifier 
training

• It is proxy as the likelihood 
approximator
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Nuisance Randomized Distillation
• Training

• Train and update critic model for every batch of classifier training
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Nuisance Randomized Distillation
• OOD Detection: 

• Outlier Dataset:  Top quarks jets

• Use representations to build anomaly metrics
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Classifier

X: Inputs

Output

r(x): N-1 Layer

Critic

Z: Nuisance, Y: label

r(x), Y, [ Z, Ž ] 

ℒ = w (CE(Ypred, Ytrue) − λ log
pϕ(rX, Y, [Z, ̂Z])

1 − pϕ )

• Metrics: 

• Calculate the distance from 
samples in representation space 
 
 

• Obtain distance from all BKG 
samples

• Here:  [ ] 

• Use this to find anomalies

dQCD, dWZ

dA = (rX − μA) Σ−1
A (rX − μA)T

(dist. from BKG A)



Abhijith Gandrakota

Nuisance Randomized Distillation
• OOD Detection: 

• Outlier Dataset:  Top quarks jets

• Use representations to build anomaly metrics
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Classifier

X: Inputs

Output

r(x): N-1 Layer

Critic

Z: Nuisance, Y: label

r(x), Y, [ Z, Ž ] 

ℒ = w (CE(Ypred, Ytrue) − λ log
pϕ(rX, Y, [Z, ̂Z])

1 − pϕ )

• Metrics: 

• Obtain distance  from all BKG 
samples

• Here:  [ ]

• Alternative Metrics: 

• Max(Logits) also serves as a OOD 
Score

• Max Logits (OOD) < Max Logits (BKG)

dA

dQCD, dWZ
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Results 
• Obtained representations denotes the diversity 

of what is typical

• While keeping relevant info for anomaly 
detection

• Achieves this while staying decorrelated with 
kinematics of the jet 

•  Can be applied on various use cases,  
  e.g: Domain adaptation

• Easy way to teach NNs physics 
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Method AUC ↑ JSD ↓ Sig. Imp. ↑
VAE 0.88 0.065 2.03

NuRD-MD 0.90 0.013 2.47

NuRD-ML 0.91 0.027 2.32

 AG,  Lily. Z,  Aahlad. P,  Jennifer. Net al [Neurips 2023, 2401.08777]

https://arxiv.org/pdf/2401.08777.pdf
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Summary

• Fast, Efficient and Robust NNs are crucial for uncovering BSM physics

• Friendly for use in various computing architectures

• Knowledge Distillation can simplifies model architectures for various use cases

• Enables transfer of inductive bias from a capable teacher

• New take on building a representation space to detect anomalies

• NuRD,  w/ joint independence, maximize performance while decorrelating 
nuisances

• Results in smaller and robust models

• Check out for further details:  arxiv:2311.14160,  arxiv:2311.17162,  arxiv:2401.08777 
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Efficient DeepSet auto encoder
• Permutation invariant architecture

• DeepSet / Transformer encoder

• Chamfer loss as reconstruction objective

• KLD and / or Reco loss as AD score

• CLIP-VAE:

• Avoid over-regularization for the  
poorly reconstructed samples 

• Prevent back-propagation of KLD term

29Ryan. L,  AG,  Jennifer. N, et al [Neurips 2023, 2311.14160 ]
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