Fast and Robust Neural Networks for HEP

Abhijith Gandrakota¹, Ryan Liu², Jennifer Ngadiuba¹, Aahlad Puli³, Nhan Tran¹, Lily Zang³ et. al

Fermilab

ACAT 2024, Stony Brook

See: <u>arxiv:2311.14160</u>, <u>arxiv:2311.17162</u>, <u>arxiv:2401.08777</u>

- Fermilab
- Neural Networks are a crucial a component in our effort to find BSM physics
 - Identifying different decays from Standard Model

- Neural Networks are a crucial an tool to find physics beyond SM (BSM)
 - Identifying different decays from Standard Model
 - Even finding "anomalous decays" from BSM

- Neural Networks are a crucial an tool to find physics beyond SM (BSM)
 - Identifying different decays from Standard Model
 - Even finding "anomalous decays" from BSM

• How to adapt it for classification and anomaly detection ?

W/Z/r

Anomaly detection

Classification

q/g

What is it ?

• NN trained to classify **cows** vs **penguins**

What is it ?

Lets say we train a algorithm(NN) to identify cows vs penguins

Cows typically in grassland backdrop

Penguins typically Photographed in snow

- What about pictures of **cows** on snow ?
 - Robust Classifier
- Can it predict if this is neither of them ?
 - Robust Anomaly Detection

- Neural Networks are a crucial an tool to find physics beyond SM (BSM)
 - Identifying different decays from Standard Model
 - Even finding "anomalous decays" from BSM
- Need to be Robust for high sensitivity and avoid false discovery
- NNs are also very important in data acquisition and processing pipelines
 - Strict inference time / latency and resource constraints
 - Need to be fast and efficient

Robustness w/ Inductive bias

- We can make NNs robust with inductive bias
 - Design the model with physics knowledge
 - Explicit Inductive bias to make models robust

Robustness w/ Inductive bias

- We can make NNs robust with inductive bias
 - Design the model with physics knowledge
 - Explicit Inductive bias to make models robust

- Encoding Lorentz invariance into the NNs
 - Example: Lorrentz Net (arxiv:2201.08187)
 - Strong invariance, but resource intensive

• Problem: How do we make models w/ inductive lighter and faster ?

Lorentz Group Equivariant Block (LGEB)

Robustness w/ Inductive bias

- We can make NNs robust with inductive bias
 - Design the model with physics knowledge
 - Explicit Inductive bias to make models robust

- Encoding Lorentz invariance into the NNs
 - Example: Lorrentz Net (<u>arxiv:2201.08187</u>)
 - Strong invariance, but resource intensive

Lorentz Group Equivariant Block (LGEB)

- Problem: How do we make models w/ inductive lighter and faster ?
 - Solution: Transfer the inductive bias to a smaller model w/ Knowledge distillation

Knowledge distillation

- KD: "Transferring knowledge from a larger complex model to smaller simple model"
 - Proposed in arXiv:1503.02531 by Hinton et. al
- Uses the soft targets; probability distributions over classes from teacher model
 - Conveys rich information about class relationships aiding in knowledge transfer
 - Shared insights from teacher helps in faster convergence
 - Loss :

•

- $L_{KD}(q; p, y) = (1 \lambda)\mathcal{H}(y, q) + \lambda D_{KL}(\tilde{q} \| \tilde{p})$
 - y : Truth labels
 - q: Student predictions
 - \tilde{p} : Soften predictions $\left(= \frac{e^{s(x)}/T}{\sum_{x'} e^{s(x')/T}} \right)$

Transferring Inductive Bias

- Teacher: Lorentz Net Group equivariant graph neural network
 - Designed to w/ Lorentz Invariant message passing
- Student Networks:
 - DeepSet: 3 layer X I 28 dim. wide FCN for ρ and ϕ networks
 - MLP w/ flat inputs : 3 layer X 512 hidden features
- Trained on top tagging dataset
 - Classifying QCD vs top jets
 - Augmented training data with boosted jets by β sampled from $[0,\!\beta_{max}]$ with only KD loss

[Study the effect of KD]

[Study transfer of inductive Bias]

Results

- Training with knowledge distillation leads to better accuracy and performance
- In the case of MLP, we see 1.75x improvement in BKG rejection, compared to training from scratch
 - While reducing FLOPs by 640x !!
- We observe that KD can transfer the inductive bias to the student !

	#params	FLOPs	Accuracy	AUC	${ m Rej}_{30\%}$	$\mathrm{Rej}_{50\%}$
DeepSet from scratch DeepSet KD $T = 1$ DeepSet KD $T = 3$ DeepSet KD $T = 5$	68.2K	1.67M	0.930 0.932 0.932 0.932	0.9808 0.9818 0.9819 0.9819	747 926 970 970	219 241 255 248
MLP from scratch MLP KD $T = 1$ MLP KD $T = 3$ MLP KD $T = 5$	527K	529K	0.904 0.914 0.918 0.919	0.9663 0.9726 0.9751 0.9750	256 375 483 503	82 119 144 146
LorentzNet (teacher)	224K	339M	0.942	0.9868	2195	498

How about anomaly detection ?

How to make it Fast and Robust ?

How about anomaly detection ?

- Predominantly anomaly detection in HEP uses density estimation;
 e.g Autoencoders
 - Encode input into a latent space; examine reconstruction errors post decoding

- Typically need both encoder and decoder parts of network to get anomaly metric
 - How do we make it fast and robust ?

Fermilab

Robust anomaly detection at LHC

- Learning from SM QCD jets to identify any BSM decays
 - More likely that these jets have lower mass

• If ML algorithm learns jet mass, it could just label high mass jets as anomalous

Robust anomaly detection at LHC

- Learning from SM particle jets to identify any BSM decays
 - More likely that these jets have lower mass

- If ML algorithm learns jet mass, it could just label high mass jets as anomalous
 - We could make wrong calls, may also create signs of artificial resonances
- Need to teach network what is important and what to not to focus on

Robust representations

- **‡** Fermilab
- Learning from QCD and W/Z jets, can detect top quark decays as outliers ?

• Idea: Use different decay examples to capture underlying physics

- Train a classifier on MC (labeled data) \implies obtain representations
 - Avenue to learn what's important [~ minimal hand holding]
 - Build representations to have maximum information with the labels
- Ensure representations do not vary w/ nuisances (Zhang et al. 2022, Puli et al. 2022).
 - This way, we can maximize only the relevant physics information

- **Fermilab**
- For out dataset we have input features (X), labels for decays (Y), and Nuisance (Z)
- Nuisance Randomized Distillation:
 - I : Avoid learning nuisance: break the dependence b/n label and nuisance.
 - Use importance weights w to break dependence.
 - II : Build representations that do not vary with the nuisance
 - Intuitively, it shouldn't be possible to distinguish b/n [Joint independence]
 - (r_X, Y, Z) vs $(r_X, Y, randomized nuisance(\hat{Z}))$
 - Enforce joint independence
- Use the representations to detect anomalies.

•

- Building out representation:
 - Start with a simple classifier b/n different particle decays
 - CNNs w/ final dense layers output to logits / softmax probabilities

- Penalize mutual information
 - Input $(r_X, Y, [Z, \hat{Z}])$ to critic model (ϕ) , a simple MLP
 - Approximates the mutual information, use this to penalize the loss

Fermilab

- Training
 - Train and update critic model for every batch of classifier training

- Training
 - Train and update critic model for every batch of classifier training

‡ Fermilab

- OOD Detection:
 - Outlier Dataset: Top quarks jets
 - Use representations to build anomaly metrics

- Metrics:
 - Calculate the distance from samples in representation space
 - $d_A = (r_X \mu_A) \Sigma_A^{-1} (r_X \mu_A)^T$ (dist. from BKG A)
 - Obtain distance from all BKG samples
 - Here: $[d_{QCD}, d_{WZ}]$
 - $\boldsymbol{\cdot}$ Use this to find anomalies

- OOD Detection:
 - Outlier Dataset: Top quarks jets
 - Use representations to build anomaly metrics

- Metrics:
 - Obtain distance d_A from all BKG samples
 - Here: $[d_{QCD}, d_{WZ}]$
- Alternative Metrics:
 - Max(Logits) also serves as a OOD Score
 - Max Logits (OOD) < Max Logits (BKG)

Results

- Obtained representations denotes the diversity of what is *typical*
 - While keeping relevant info for anomaly detection
 - Achieves this while staying decorrelated with kinematics of the jet

Method	AUC 1	JSD ↓	Sig. Imp. 1
VAE	0.88	0.065	2.03
NuRD-MD	0.90	0.013	2.47
NuRD-ML	0.91	0.027	2.32

- Can be applied on various use cases, e.g: Domain adaptation
- Easy way to teach NNs physics

Summary

- Fast, Efficient and Robust NNs are crucial for uncovering BSM physics
 - Friendly for use in various computing architectures
- Knowledge Distillation can simplifies model architectures for various use cases
 - Enables transfer of inductive bias from a capable teacher
- New take on building a representation space to detect anomalies
 - NuRD, w/ joint independence, maximize performance while decorrelating nuisances
 - Results in smaller and robust models
- Check out for further details: <u>arxiv:2311.14160</u>, <u>arxiv:2311.17162</u>, <u>arxiv:2401.08777</u>

Thank you !

Fermilab

Efficient DeepSet auto encoder

- Permutation invariant architecture
 - DeepSet / Transformer encoder
 - Chamfer loss as reconstruction objective
 - KLD and / or Reco loss as AD score
- · CLIP-VAE:
 - Avoid over-regularization for the poorly reconstructed samples
 - Prevent back-propagation of KLD term

	Model Profile				Signal efficiency (%) at $\text{Rej} = 100$						
	#params	FLOPs	$H \to 4q$	$H \to b \overline{b}$	$H \to c \bar c$	$H \to gg$	$H \to qql$	$W \to q q$	$Z \to q q$	$t \to bl$	$t \to bqq$
DeepSet w/ PID DeepSet w/o PID Transformer w/ PID Transformer w/o PID	103K 952K	6.95M 78.9M	5.8 ± 2.1 1.0 ± 0.2 6.5 ± 0.8 3.1 ± 0.8	$5.1 \pm 1.2 \\ 2.2 \pm 0.2 \\ 4.0 \pm 0.9 \\ 2.2 \pm 0.3$	5.2 ± 1.1 6.3 ± 0.5 4.9 ± 0.7 5.7 ± 0.6	$\begin{array}{c} 0.4 \pm 0.1 \\ 0.2 \pm 0.1 \\ \textbf{0.5} \pm \textbf{0.1} \\ 0.3 \pm 0.1 \end{array}$	35 ± 3 19 ± 1 43 ± 4 23 ± 3	3.5 ± 0.6 6.0 ± 0.6 3.8 ± 0.3 5.6 ± 0.9	$\begin{array}{c} 3.3 \pm 0.6 \\ \mathbf{5.2 \pm 0.5} \\ 3.3 \pm 0.3 \\ 5.0 \pm 0.6 \end{array}$	53 ± 8 49 ± 2 58 ± 5 41 ± 3	$22 \pm 5 \\ 4 \pm 1 \\ 19 \pm 1 \\ 11 \pm 1$
N-subjettiness	N/A	N/A	0.6	1.9	5.0	0.2	19	4.1	3.5	31	8.8

Ryan. L, AG, Jennifer. N, et al [Neurips 2023, 2311.14160] Abhijith Gandrakota