The talk is supported proyect TED2021-130852B-I00, financiaded by MCIN/AEI/10.13039/501100011033 and the EU "NextGenerationEU"/PRTR

TRACKING AND VERTEXING DOWNSTREAM THE LHCB MAGNET AT THE FIRST STAGE OF THE TRIGGER

Arantza De Oyanguren Campos¹, Dr. Brij Kishor Jashal^{1,2} Jiahui Zhuo¹, Valerii Kholoimov^{1,3}, <u>Volodymyr Svintozelskyi^{1,3}</u>

¹IFIC, UNIV. OF VALENCIA AND CSIC (ES), ²TATA INSTITUTE OF FUNDAMENTAL RESEARCH (TIFR), ³TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV (TSNUK)

Overview

LHCB OVERVIEW

Dataflow, trigger and tracking systems

WHY DO WE NEED **DOWNSTREAM?**

Physics motivation from both SM and BSM

DOWNSTREAM TRACKING

Essential steps in track reconstruction and ghost rejection

TRACKING PERFORMANCE

Efficiency, momentum resolution and effect on HLT1

DOWNSTREAM VERTEXING

Vertex reconstruction algorithm and its performance

LHCb

LHCb is a specialized b-physics experiment located on LHC (13 TeV, pp collisions)

Forward, single-arm geometry

Strong dipole magnet (4 T)

Just because this is the first talk about LHCb :)

DOWNSTREAM TRACKING

ACAT 2024

0m

Vertex

Locator

LHCb Tracking

Three tracking detectors:

- VELO (pixel)
- UT (strips)
- SciFi (fibers; the only tracker after magnet)

Two track types are currently used at HLT1:

- ✓ Long (VELO SciFi)
- ✓ Downstream (UT-SciFi; today's topic)

DOWNSTREAM TRACKING

ACAT 2024

LHCb Dataflow

LHCb detector generates 4TB/s of raw data

Effective filtering is crucial, and implemented in:

- High-Level Trigger 1 (HLT1) GPU-based software trigger (today's topic)
- HLT2 CPU-based software trigger

No hardware trigger anymore

Together, triggers reduce data flow to 10 GB/s

DOWNSTREAM TRACKING

ACAT 2024

Why do we need 02 -

Brij Kishor Jashal (2023). Connecting The Dots 2023. Downstream: a new algorithm at LHCb...

Calefice L. et all. Effect of the high-level trigger for detecting long-lived particles at LHCb

Why downstream?

b- and c-meson decays can be reconstructed into long tracks with high efficiency

But for particles with $\tau > 100 ps$ many decays happening out of the VELO detector

- reconstruction with long tracks at HLT1 is impossible

Run 2	LL	DD	TT	HLT1 (eff) TC
Λ^0	12%	51%	37%	< 10 %
K_s^0	46%	38%	16%	< 25 %

DOWNSTREAM TRACKING

ACAT 2024

Lawrence Lee et all. Collider searches for long-lived particles beyond the Standard Model

Downstream tracking

Downstream extrapolation

Downstream tracks are reconstructed with following steps:

- Reconstruction of SciFi seeds with HybridSeeding
 [Brij Kishor Jashal, Standalone track reconstruction and matching algorithms]
- Extrapolation of SciFi seeds towards UT plane
- Assigning closest UT hits to the extrapolation
- Final track fitting

The extrapolation is done using kink approximation (kink position is parametrized):

 $z_{kink} = \alpha_0 + \alpha_1 t_y^2 + \alpha_2 t_x^2 + \alpha_3 \frac{q}{p} + \alpha_4 |x_{SciFi}| + \alpha_5 |y_{SciFi}| + \alpha_6 |t_y| + \alpha_7 |t_x|$ $x_{kink} = x_{SciFi} + t_x (z_{kink} - z_{SciFi})$ $y_{kink} = (y_{SciFi} + dy) + t_{y_{mag}} (z_{kink} - z_{SciFi})$

DOWNSTREAM TRACKING

ACAT 2024

Downstream fake track killer

Fake tracks (\equiv ghosts) are filtered out with a single hidden layer fully connected neural network (14 nodes):

- Use reconstructed track states and quality parameters as inputs
- Ghost killer manages to significantly suppress the output ghost rate
- Independent of physics channel

Meets HLT1 throughput requirements

LHCB-FIGURE-2023-028

Tracking performance 04

Tracking efficiency

DOWNSTREAM TRACKING

ACAT 2024

$\approx 75\%$

SciFi track reconstruction efficiency ($\approx 90\%$) is included!

Momentum resolution

DOWNSTREAM TRACKING

ACAT 2024

LHCB-FIGURE-2023-028

< 5%

Effect on HLT1 throughput

DOWNSTREAM TRACKING

ACAT 2024

LHCB-FIGURE-2023-028

Downstream vertexing

Vertex reconstruction

Track extrapolation before UT is also non-linear - due to remaining magnetic field in the region:

 $x(z) = x_0 + t_x(z - z_0) + \gamma(z - z_0)^2$ where $\gamma = \gamma(\frac{q}{p})$ - coefficient of track non-linearity

Kalman filter-based vertexing algorithm is implemented to reconstruct the vertex of two downstream tracks

DOWNSTREAM TRACKING ACAT 2024

Vertex selection

Vertexing algorithm successfully reconstructs the mass distribution of Λ^0 and K_s^0 utilizing two downstream tracks in HLT1

NN-based classifier for monitoring and selection at HLT1

Facilitating UT commissioning and online calibration

Prepared now for Run 3

DOWNSTREAM TRACKING ACAT 2024

LHCB-FIGURE-2023-028

Summary

- ✓ First implementation of Downstream track & vertex reconstruction at HLT1!
- ✓ Small effect on throughout: only 4.3 % drop (2023)
- ✓ Physics efficiency of tracking $\approx 75\%$ and independent of the physics channel
- ✓ First implementation of a NN at HLT1 for fake track killing and selection line
- ✓ No bias on Λ^0 and K_s^0 mass reconstruction;
 - $\sigma_M < 4$ MeV for Λ^0 (10 MeV for K_s^0)
- ✓ Expected huge impact on physics

Stay tuned!

DOWNSTREAM TRACKING

ACAT 2024

Bri	i Kishor Jashal ((2023)). Connecting	The Dots 2023.	Downstream: a new	algorithm

Channel	DD/LL proportion	Interest	
b-hadron decays			
$\Lambda_b^0 \to \Lambda \gamma$	3.4	γ polarization	
$\Xi_b^- \to \Xi^- \gamma$	25	γ polarization	
$\Omega_b^- o \Omega^- \gamma$	13	γ polariation	
$B^+ \rightarrow K^0_S K^0_S \pi^+$	2.8	CPV, BF	
$B^+ \rightarrow K^0_{ m S} K^0_{ m S} K^+$	2.7	CPV, BI	
$B^0_s \rightarrow K^0_{ m S} K^0_{ m S}$	3.6	CPV, BF	
Charm physics			
$\Lambda c^+ \to \Lambda K^+$	4.4	Polarization s	
$\Xi_c^-\to \Xi^-\pi^-$	8.4	Polarization s	
$\mathrm{D}^0 \to K^0_\mathrm{S} K^0_\mathrm{S}$	1.8	CPV	
$J/\psi \to \Lambda \bar{\Lambda}$	4.8	Polarization stud	
Strange physics			
$K^0_{ m S} ightarrow \mu^+ \mu^-$	0.6	BR	
$K^0_{\rm S}\!\rightarrow\mu^+\mu^-\mu^+\mu^-$	0.8	BR	
$K_{\rm S}^0 \rightarrow \gamma \mu^+ \mu^-$	0.8	BR	

This work was supported by project

TED2021-130852B-I00 and CONEXION AIHUB-CSIC

SciFi track reconstruction efficiency

LHCB-FIGURE-2022-010

