
Parallelization over ... 
● Campaigns & datasets 

● Files 

● Systematics 

▻ Typically (10k) 60min                                                                    
jobs, however, on          
standard resources 

▻ HTCondor, CRAB, ...

𝒪

Automation stack

Fully automated analysis via flow of 
columns over distributed resources
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law
luigi analysis workflow

workflow engine layer for HEP & scale-out
(experiment independent)

framework analysis code
(originally by Spotify) (experiment independent)
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Graph execution  
● Single command can                       

trigger the full pipeline                      
from inputs to plots 

● Example

 > law run cf.PlotVariables1D \
    --version dev1 \
    --datasets ttbar,dy \
    --calibrators jec,jer \
    --selector full \
    --producers muon_weights \
    --variables jet*_{eta,pt} \
    --workflow {crab,htcondor,...}

Simple customization  
● Provide simple functions,                                    

producers, to create 
■ calibrated (updated) columns 
■ selection masks 
■ new columns 
■ ML training & evaluation 
■ variables 

● Nesting enables for easy                                                            
reuse and capsulation

Example graph* 
(* Just a suggestion, can be easily  

     altered or amended by analyses)

example producer

● Using bare awkward arrays 
● Implementation and choice                                   

of tools fully up to user

columnflow.readthedocs.io
github.com/columnflow
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Documentation

General idea 
● Python-based framework for nano-like inputs 

● End-to-end orchestration & automation 

● No reliance on single local cluster or local storage 

● Adapt to any remote cluster and storage system 
▻ HTCondor, Slurm, CMS-CRAB, LSF 
▻ Store via file://, xrootd://, gsiftp://, webdav:// 

● Persistent intermediate outputs 
▻ Debugging, reuse, sharing across groups

Key concepts 
● Experiment agnostic core 

▻ Organize experiment-specific recipes in extensions 

● Use awkward arrays as interface, parquet as file format 

▻ Give users full control over processing tools                
(NumPy, TensorFlow, coffea-nano-format, pandas, ...) 

● High degree of code-reuse and collaboration 

● Define workflows with luigi + law, metadata with order 

● Control and execution via CLI, scripts and notebooks
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