
Parallelization over ...
● Campaigns & datasets

● Files

● Systematics

▻ Typically (10k) 60min
jobs, however, on
standard resources

▻ HTCondor, CRAB, ...

𝒪

Automation stack

Fully automated analysis via flow of
columns over distributed resources

Marcel Rieger
on behalf of the

 -Team
:

law
luigi analysis workflow

workflow engine layer for HEP & scale-out
(experiment independent)

framework analysis code
(originally by Spotify) (experiment independent)

Results1

Cutflow plots

Merging 2

ML Training

Merging 1

Inference Tables

Plots

lfns

lfns

cols

masks cols

cols

lfns

stats

stats

masks cols sizes

factors

events

masks

hists hists

eventsevents

events

colscols

cols

events

yes

mlcols stats

mlcols stats

model

either
way

colscols

hists

hists

cols

data hists

mc hists

data hists

mc hists

data hists hists

wrapper

hists

cols

PlotShiftedVariables1D

PlotShiftedVariablesPerProcess1D

PlotVariables1D

PlotMLResultsCreateYieldTableCreateDatacards WritePyhfWorkspace

PlotCutflow PlotCutflowVariables1D

MergeHistograms

MergeShiftedHistograms

MergeMLEvaluation

PrepareMLEvents

MergeMLEvents MergeMLStats

MLTraining

MergeSelectionStats

MergeSelectionMasks

MergeReductionStats

MergedReducedEvents

GetDatasetLFNs

CalibrateEvents

SelectEvents

CreateCutflowHistograms

ReduceEvents

ProduceColumns

UniteColumns CreateHistograms

Used in
training?

MLEvaluation

Graph execution
● Single command can

trigger the full pipeline
from inputs to plots

● Example

 > law run cf.PlotVariables1D \
 --version dev1 \
 --datasets ttbar,dy \
 --calibrators jec,jer \
 --selector full \
 --producers muon_weights \
 --variables jet*_{eta,pt} \
 --workflow {crab,htcondor,...}

Simple customization
● Provide simple functions,

producers, to create
■ calibrated (updated) columns
■ selection masks
■ new columns
■ ML training & evaluation
■ variables

● Nesting enables for easy
reuse and capsulation

Example graph*
(* Just a suggestion, can be easily

 altered or amended by analyses)

example producer

● Using bare awkward arrays
● Implementation and choice

of tools fully up to user

columnflow.readthedocs.io
github.com/columnflow

22nd International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2024)

Documentation

General idea
● Python-based framework for nano-like inputs

● End-to-end orchestration & automation

● No reliance on single local cluster or local storage

● Adapt to any remote cluster and storage system
▻ HTCondor, Slurm, CMS-CRAB, LSF
▻ Store via file://, xrootd://, gsiftp://, webdav://

● Persistent intermediate outputs
▻ Debugging, reuse, sharing across groups

Key concepts
● Experiment agnostic core

▻ Organize experiment-specific recipes in extensions

● Use awkward arrays as interface, parquet as file format

▻ Give users full control over processing tools
(NumPy, TensorFlow, coffea-nano-format, pandas, ...)

● High degree of code-reuse and collaboration

● Define workflows with luigi + law, metadata with order

● Control and execution via CLI, scripts and notebooks

https://github.com/columnflow/columnflow
https://columnflow.readthedocs.io
https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow
https://github.com/columnflow/columnflow
https://columnflow.readthedocs.io/en/stable/
https://python-order.readthedocs.io/en/latest/

