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Track Reconstruction at LHC & HL-LHC

• At the HL-LHC, additional interactions per bunch 

crossing becomes exceedingly high & CPU time 

increases exponentially with more pileup.

• GPU & ML-based approaches are actively investigated, 

but quantum ML may play an important role. 
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Run 1 Run 2 HL-LHC

µ 21 40 150-200

Tracks ~280 ~600 ~7-10k

ATL-PHYS-PUB-2019-041
https://cds.cern.ch/record/1966040



QUBO Approach

• Minimizing QUBO is equivalent to searching for the ground state of the Hamiltonian.
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Quality of 

triplets
Compatibility 

b/w triplet pairs

bij = 0 (if no shared hit)

= 1 (if conflict)

= -Sij (if two hits are shared; see backup)

F. Bapst et al. Comp. Soft. Big Sci. 4 (2019) 1.

• Tracks are formed by connecting silicon detector hits: e.g. triplets (segments w/ 3 hits).

• Doublets/triplets are connected to reconstruct tracks & it can be regarded as 

a quadratic unconstrained binary optimization (QUBO) problem.

First considered during the LEP time



Solving QUBO – Quantum Approach

• Quantum Annealing

• Quantum annealer looks for the global minimum of a 

given function through adiabatic theorem with quantum 

tunneling: a natural machine to search for the ground 

state of a Hamiltonian. 

• Quantum Gates

• QUBO can be mapped to Ising Hamiltonian and be 

solved using Variational Quantum Eigensolver (VQE), 

Quantum Approximate Optimization Algorithm (QAOA), 

or something a like. 

• There are also non-QUBO approaches such as using 

Quantum Graph Neural Network.

• See backup for the references
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A.Crippa et al., 

arXiv:2304.01690

F. Bapst et al. Comp. 

Soft. Big Sci. 4 (2019) 1 

& L. Linder, Master 

Thesis at EPFL.



Today’s Menu: Tracking w/ Quantum
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Quantum Gates w/ QAOA (CQ: classical 
data + quantum computer)

1. H. Okawa, Springer Communications in Computer 
and Information Science, 2036 (2024) 272–283, 
arXiv:2310.10255

Quantum Annealing Inspired 
Algorithms (CC; fully classical but quantum-
inspired algorithm)

2. H. Okawa, Q.-G. Zeng, X.-Z. Tao, M.-H. Yung, 
arXiv:2402.14718 (2024).

https://arxiv.org/abs/2310.10255
https://arxiv.org/abs/2402.14718


Dataset (TrackML)
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• TrackML is an open-source dataset 

prepared for TrackML Challenges 

(two competitions hosted by CERN 

& Kaggle). 

• It is designed w/ HL-LHC 

conditions (200 pileup) & run w/ 

fast simulation (e.g. noise, 

inefficiency, parametrized 

material effects, etc.)

• QUBO is computed event by event 

using hepqpr-qallse framework. 
Thanks to Andreas Salzburger for 

suggestions and discussions!

Amrouche, S., et al., arXiv:1904.06778 (2019); 

Amrouche, S., et al., Comput. Softw. Big Sci. 7(1), 1 (2023)

https://github.com/derlin/hepqpr-qallse


Quantum Gates: CQ Approach
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H. Okawa, Springer Communications in Computer and Information Science, 

2036 (2024) 272–283, arXiv:2310.10255

Thanks to Federico Meloni & David Spataro for discussions

https://arxiv.org/abs/2310.10255


QAOA in Origin Quantum (本源)

• Adopts Quantum Alternative Operator 

Ansatz for QAOA.
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An example of circuits from the actual run

• QAOA solves binary optimization problem. Library in pyqpanda-algorithm by Origin Quantum.

fidelity

• Can utilize CVaR loss function (P. 

Barkoutsos et al., Quantum, 2020, 4: 256)  

or Gibbs optimization

• 6 qubit machine (Wuyuan 悟源) is used for 

the real hardware computation in this talk. 



QAOA Optimization
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fidelity• QAOA does not perform well w/ shallow layers, but provides good performance 

with more layers. Compatible performance b/w hardware & simulator. 

• L-BFGS-B optimizer is better than SLSQP. TNC has degraded performance & not 

shown here.  

• No significant difference w/ CVaR or Gibbs loss function. 

• Probability saturates around 7 layers for L-BFGS-B cases.  

Simulator Wuyuan Hardware



QAOA Accuracy
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fidelity• Note that the probability is NOT the accuracy of QAOA. 

• A single job runs multiple measurements, ranks the answers by probability & select the 

highest probability state as answer.

• The accuracy already reaches 100% within the statistical uncertainty at 5 layers.

• For further studies, a conservative choice of 7 layers is used. 

Simulator Wuyuan Hardware



Sub-QUBOs
• Number of qubits required is determined by the number of triplet 

candidates → Obviously cannot cover the full QUBO [O(102x102~ 105x105)] for 

tracking in the NISQ era

• QUBO is split into sub-QUBOs of size 6x6 to match with OriginQ hardware. 
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• There are various sub-

QUBO algorithms 

proposed: qbsolv (now in 

dwave-hybrid library), for 

example. 

• I adopted a sub-QUBO 

method using multiple 

solution instances from Y. 

Atobe, M. Tawada, N. 

Togawa, IEEE Trans. 

Comp. 71, 10 (2022) 2606. 

(see backup for details)

A.Crippa et al., 

arXiv:2304.01690



Preliminary sub-QUBO Results

• Ran measurements to compare the performance and stability. 7 layers used in QAOA. 

• No significant dependence on sub-QUBO model parameters (NI, NE, NS) & compatible 

performance between OriginQ simulator & actual hardware!

• Visible improvement w/ sub-QUBO compared to the simulated annealing only!
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WIP: Triplet Efficiency & Purity

• QAOA+sub-QUBO provides compatible performance as 

previous quantum annealing studies. 

• No sign of degradation in the real hardware

• This is the 1st tracking w/ QAOA, theoretically robust sub-

QUBO & Chinese quantum computer
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Display made w/ 

hepqpr-qallse



Quantum-Inspired (CC) Approach 
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H. Okawa, Q.-G. Zeng, X.-Z. Tao, M.-H. Yung, arXiv:2402.14718 (2024)

https://arxiv.org/abs/2402.14718


Quantum Annealing Inspired Algorithms
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• “Quantum-inspired” algorithms search for minimum 

energy through the classical time evolution of 

differential equations: simulated annealing, 

simulated bifurcation (SB), simulated coherent Ising

machine, etc.

• SB in particular can run in parallel unlike 

simulated annealing, in which one needs to access 

the full set of spins & not suitable for parallel 

processing
M.H. Yung



Simulated Bifurcation
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• Simulated bifurcation is known to 

outperform other CC algorithms as well as 

quantum annealing (QA) for some problems

• Simulated Coherent Ising Machine (CIM) had 

largely degraded performance in our study, so 

is not presented.

Goto  et  al.,  Sci.  Adv.  2019; 5 : eaav2372



Mimimum Ising Energy Prediction

• Originally proposed adiabatic simulated bifurcation (aSB) is largely outperformed by new versions, 

so not shown here. D-Wave Neal is shown as a simulated annealing benchmark. 

• Ballistic simulated bifurcation (bSB) provides the best prediction of minimum energy with 

the least fluctuation. 

• Discrete simulated bifurcation (dSB) is not as good as the other two, but the impact on the 

reconstruction performance is not significant (next slide)

H. Okawa ACAT 2024 - Track 2: Data Analysis - Algorithms and Tools 17

Event w/

409 

particles

4092 

particles

9435 

particles



• Simulated bifurcation provides compatible or slightly better performance than D-Wave 

Neal.

• Track efficiency stays over 95% for all dataset up to the highest HL-LHC conditions

• Purity degrades with track multiplicity but >90% for <6000 particles, >84% even for 

~10000 particles.

H. Okawa ACAT 2024 - Track 2: Data Analysis - Algorithms and Tools 18

Track Efficiency & Purity w/ QAIA



Computation Speed

• Ballistic simulated bifurcation provides 4 orders of magnitude speed-up (1367s → 0.14s)

at most, compared to D-Wave Neal. → More speed-up expected with larger data size.

• Unlike D-Wave Neal, simulated bifurcation can effectively run w/ multiple processing 

& GPU → Perfect match with HEP computing environment!!

H. Okawa ACAT 2024 - Track 2: Data Analysis - Algorithms and Tools 19

x104 faster!!!

Only 1 CPU/GPU used respectively



Summary
• Tracking is the highest CPU-consuming reconstruction task in the HL-LHC era. 

• Improvement of existing methods & classical ML methods are bringing in improvement, 

but another leap from quantum machine learning would be highly exciting. 

• Presented recent results on the quantum tracking using two complementary approaches: 

CQ approach (QAOA+subQUBO) & CC approach (quantum-annealing inspired 

algorithms). 

• CQ approach: Promising tracking performance from the real quantum hardware. 1st

tracking w/ QAOA, theoretically robust sub-QUBO & Chinese quantum computer

• CC approach: Quantum-annealing inspired algorithms provide four orders of magnitude 

speed-up at most (& more speed-up expected w/ larger dataset) & can already be 

considered for implementation. This is the 1st application of simulated bifurcation in 

HEP!

• Further studies are ongoing. Stay tuned!
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Thank you for listening!

Reconstructed w/ bSB

Generated w/ 

hepqpr-qallse



Backup
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reconstruction in the LHCb vertex detector. JINST 18(11), 11028 (2023) https://doi.org/10.1088/1748-0221/18/11/P11028

• Schwaegerl, T., Issever, C., Jansen, K., Khoo, T.J., Kuehn, S., Tueysuez, C., Weber, H.: Particle track reconstruction with noisy intermediate-scale quantum 

computers (2023) arXiv:2303.13249

• Brown, C., Spannowsky, M., Tapper, A., Williams, S., Xiotidis, I.: Quan- tum Pathways for Charged Track Finding in High-Energy Collisions (2023) 

arXiv:2311.00766 [hep-ph]
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Classical ML Approaches

• Graph neural network (GNN) is actively investigated in 

the LHC [Project Exa.TrkX] & BES-III communities. 

• There are also studies using CNN & Point Net at BES-III

• Silicon hits can be regarded as “nodes” & connected 

segments as “edges”

• Computing time scales linearly with number of tracks
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Cenk Tueysuez

Daniel Murnane

https://exatrkx.github.io/


QUBO 
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• bij = 0 (if no shared hit), = 1 (if conflict), = -Sij (if two hits are shared)

• α, β , γ and λ are tunable parameters, taken to be 0.5, 0.2, 1.0 and 0.5 

Lucy Linder’s Master thesis



D-Wave Studies 
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• Impact of parameters in the bias weights ai

Lucy Linder’s Master thesis



Multiple Solution Instances
• 3 parameters (NI, NE, NS) in this sub-QUBO method. 

• Extract NI quasi-optimal solutions from full-QUBO classically.

• Randomly select NS solution instances from NI.

• Focus on particular binary variable xi. Rank them in accordance to 

how much they vary over NS solution instances. Highly varying xi  will 

be included in the sub-QUBO model.  

• Pick-up process of NS solution from quantum computing is repeated 

NE times & NE sub-QUBO models are considered. 

• Returns a pool of NI solutions & the best solution will be chosen.
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Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606

𝑄𝑈𝐵𝑂 =

𝑖

𝑎𝑖𝑥𝑖 + 

𝑖>𝑗

𝑏𝑖𝑗𝑥𝑖𝑥𝑗



Sub-QUBO Methods
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Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606
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