

Track Reconstruction for Future Colliders with Quantum Algorithms

22nd International Workshop on Advanced Computing and Analysis Techniques in Physics Research, March 11, 2024

Hideki Okawa

Institute of High Energy Physics, Chinese Academy of Sciences

Track Reconstruction at LHC & HL-LHC

	Run 1	Run 2	HL-LHC
μ	21	40	150-200
Tracks	~280	~600	~7-10k

- At the HL-LHC, additional interactions per bunch crossing becomes exceedingly high & <u>CPU time</u> increases exponentially with more pileup.
- GPU & ML-based approaches are actively investigated, but quantum ML may play an important role.

https://cds.cern.ch/record/1966040

QUBO Approach

- Tracks are formed by connecting silicon detector hits: e.g. triplets (segments w/ 3 hits).
- Doublets/triplets are connected to reconstruct tracks & it can be regarded as a <u>quadratic unconstrained binary optimization (QUBO)</u> problem.

Minimizing QUBO is equivalent to searching for the ground state of the Hamiltonian.

Solving QUBO – Quantum Approach

Quantum Annealing

• Quantum annealer looks for the global minimum of a given function through adiabatic theorem with quantum s tunneling: a natural machine to search for the ground state of a Hamiltonian $\mathcal{H} = -\sum_{n=1}^{N} \sum_{m < n} \bar{b}_{nm} \sigma_n^x \sigma_m^x - \sum_{n=1}^{N} \bar{a}_n \sigma_n^x$

Quantum Gates

- QUBO can be mapped to <u>Ising Hamiltonian</u> and be solved using Variational Quantum Eigensolver (VQE), Quantum Approximate Optimization Algorithm (QAOA), or something a like.
- There are also non-QUBO approaches such as using Quantum Graph Neural Network.
- See backup for the references

Today's Menu: Tracking w/ Quantum

Quantum Gates w/ QAOA (CQ: classical data + quantum computer)

1. <u>H. Okawa</u>, Springer Communications in Compute and Information Science, 2036 (2024) 272–283, arXiv:2310.10255

Quantum Annealing Inspired Algorithms (CC; fully classical but quantuminspired algorithm)

2. <u>**H. Okawa**</u>, Q.-G. Zeng, X.-Z. Tao, M.-H. Yung, <u>arXiv:2402.14718</u> (2024).

system

generating

data

C - classical, Q - quantum

Dataset (TrackML)

- TrackML is an open-source dataset prepared for TrackML Challenges (two competitions hosted by CERN & Kaggle).
- It is designed w/ HL-LHC conditions (200 pileup) & run w/ fast simulation (e.g. noise, inefficiency, parametrized material effects, etc.)
- QUBO is computed event by event using <u>hepqpr-qallse framework</u>.

Amrouche, S., et al., arXiv:1904.06778 (2019); Amrouche, S., et al., Comput. Softw. Big Sci. 7(1), 1 (2023)

Thanks to Andreas Salzburger for suggestions and discussions!

Quantum Gates: CQ Approach

H. Okawa, Springer Communications in Computer and Information Science, 2036 (2024) 272–283, arXiv:2310.10255

Thanks to Federico Meloni & David Spataro for discussions

QAOA in Origin Quantum (本源)

- QAOA solves binary optimization problem. Library in pyqpanda-algorithm by Origin Quantum.
- Adopts Quantum Alternative Operator
 Ansatz for QAOA.
 An example of circuits from the actual run

- Can utilize CVaR loss function (P. Barkoutsos et al., Quantum, 2020, 4: 256) or Gibbs optimization
- 6 qubit machine (Wuyuan 悟源) is used for the real hardware computation in this talk.

QAOA Optimization

- QAOA does not perform well w/ shallow layers, but provides good performance with more layers. <u>Compatible performance b/w hardware & simulator</u>.
- L-BFGS-B optimizer is better than SLSQP. TNC has degraded performance & not shown here.
- No significant difference w/ CVaR or Gibbs loss function.
- Probability saturates around 7 layers for L-BFGS-B cases.

QAOA Accuracy

- Note that the probability is NOT the accuracy of QAOA.
- A single job runs multiple measurements, ranks the answers by probability & select the highest probability state as answer.
- The accuracy already reaches 100% within the statistical uncertainty at 5 layers.
- For further studies, a conservative choice of 7 layers is used.

Sub-QUBOs

- Number of qubits required is determined by the number of triplet candidates → Obviously cannot cover the full QUBO [O(10²x10²~ 10⁵x10⁵)] for tracking in the NISQ era
- QUBO is split into sub-QUBOs of size 6x6 to match with OriginQ hardware.

ACAT 2024 - Track 2: Data Analysis - Algorithms and Tools

- There are various sub-QUBO algorithms proposed: qbsolv (now in dwave-hybrid library), for example.
- I adopted a sub-QUBO method using multiple solution instances from Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606. (see backup for details)

Preliminary sub-QUBO Results

- Ran measurements to compare the performance and stability. 7 layers used in QAOA.
- No significant dependence on sub-QUBO model parameters (N_I, N_E, N_S) & <u>compatible</u> performance between OriginQ simulator & actual hardware!
- Visible improvement w/ sub-QUBO compared to the simulated annealing only!

WIP: Triplet Efficiency & Purity

Efficiency =
$$\frac{TP}{TP + FN} = \frac{\# \text{ of matched reconstructed doublets}}{\# \text{ of true doublets}}$$

Purity = $\frac{TP}{TP + FP} = \frac{\# \text{ of matched reconstructed doublets}}{\# \text{ of all reconstructed doublets}}$,

- QAOA+sub-QUBO provides compatible performance as previous quantum annealing studies.
- No sign of degradation in the real hardware
- This is the 1st tracking w/ QAOA, theoretically robust sub-QUBO & Chinese quantum computer

Quantum-Inspired (CC) Approach

H. Okawa, Q.-G. Zeng, X.-Z. Tao, M.-H. Yung, arXiv:2402.14718 (2024)

Quantum Annealing Inspired Algorithms

Quantum inspired algorithm

- "Quantum-inspired" algorithms search for minimum energy through the classical time evolution of differential equations: simulated annealing, simulated bifurcation (SB), simulated coherent Ising machine, etc.
- SB in particular can run in parallel unlike simulated annealing, in which one needs to access the full set of spins & not suitable for parallel processing

Simulated Bifurcation (SB)

adiabatic Simulated Bifurcation (aSB)

$$\dot{x}_i = rac{\partial H_{ ext{SB}}}{\partial y_i} = \Delta y_i, \qquad \dot{y}_i = rac{\partial H_{ ext{SB}}}{\partial x_i} = - [Kx_i^2 - p(t) + \Delta]x_i + \xi_0 \sum_{j=1}^N J_{ij}x_j$$

ballistic Simulated Bifurcation (bSB)

$$\dot{x}_i = rac{\partial H_{ ext{SB}}}{\partial y_i} = \Delta y_i, \qquad \dot{y}_i = rac{\partial H_{ ext{SB}}}{\partial x_i} = (p(t) - \Delta) x_i + \xi_0 \sum_{j=1}^N J_{ij} x_j$$

> discrete Simulated Bifurcation (dSB)

$$\dot{x}_i = \frac{\partial H_{\rm SB}}{\partial y_i} = \Delta y_i, \qquad \dot{y}_i = \frac{\partial H_{\rm SB}}{\partial x_i} = (p(t) - \Delta)x_i + \xi_0 \sum_{j=1}^N J_{ij} {\rm sign}(x_j)$$

M.H. Yung

Simulated Bifurcation

Goto et al., Sci. Adv. 2019; 5 : eaav2372

- Simulated bifurcation is known to outperform other CC algorithms as well as quantum annealing (QA) for some problems
- Simulated Coherent Ising Machine (CIM) had largely degraded performance in our study, so is not presented.

N	Connectivity	$J_{i,j}$	Machine	TTS	
60	All-to-all	{±1}	d SBM RBM CIM QA	9.2 μs 10 μs 0.6 ms 1.4 s	
100	All-to-all	{±1}	dSBM RBM SimCIM CIM	29 μs 30 μs 0.6 ms 3.0 ms	
	-	{0, -1}	dSBM	0.70 ms	
200	Sparse		QA	11 ms	
	(Degree 3)		CIM	51 MS	
700	All-to-all	{±1}	dSBM SimCIM DA	25 ms 0.14 s 0.27 s	
1024	All-to-all	{±1}	dSBM DA	55 ms 1 s	
1024	All-to-all _{{-2}	16 bits 1 ¹⁵ + 1,, 2 ¹⁵	dSBM - 1} DA	0.29 s 0.9 s	
2000 (K ₂₀₀₀)	All-to-all	{±1}	dSBM	1.3 s	
2000 (G22)	Sparse (1%)	{0, -1}	dSBM SimCIM	2.7 s 12 s	
					10 ⁻⁶ 10 ⁻³ 1
					TTS (s)

Mimimum Ising Energy Prediction

- Originally proposed adiabatic simulated bifurcation (aSB) is largely outperformed by new versions, so not shown here. D-Wave Neal is shown as a simulated annealing benchmark.
- Ballistic simulated bifurcation (bSB) provides the best prediction of minimum energy with the least fluctuation.
- Discrete simulated bifurcation (dSB) is not as good as the other two, but the impact on the reconstruction performance is not significant (next slide)

Track Efficiency & Purity w/ QAIA

- Simulated bifurcation provides compatible or slightly better performance than D-Wave Neal.
- Track efficiency stays over 95% for all dataset up to the highest HL-LHC conditions
- Purity degrades with track multiplicity but >90% for <6000 particles, >84% even for <10000 particles.

Computation Speed

- Ballistic simulated bifurcation provides <u>4 orders of magnitude speed-up (1367s → 0.14s)</u> at most, compared to D-Wave Neal. → More speed-up expected with larger data size.
- Unlike D-Wave Neal, simulated bifurcation can effectively run <u>w/ multiple processing</u> <u>& GPU</u> → Perfect match with HEP computing environment!!

Summary

- Tracking is the highest CPU-consuming reconstruction task in the HL-LHC era.
- Improvement of existing methods & classical ML methods are bringing in improvement, but another leap from quantum machine learning would be highly exciting.
- Presented recent results on the quantum tracking using two complementary approaches: CQ approach (QAOA+subQUBO) & CC approach (quantum-annealing inspired algorithms).
- CQ approach: Promising tracking performance from the real quantum hardware. 1st tracking w/ QAOA, theoretically robust sub-QUBO & Chinese quantum computer
- CC approach: Quantum-annealing inspired algorithms provide four orders of magnitude speed-up at most (& more speed-up expected w/ larger dataset) & can already be considered for implementation. This is the 1st application of simulated bifurcation in HEP!
- Further studies are ongoing. Stay tuned!

Backup

References of Previous Studies

- Bapst, F., Bhimji, W., Calafiura, P., Gray, H., Lavrijsen, W., Linder, L.: A pattern recognition algorithm for quantum annealers. Comput. Softw. Big Sci. 4(1), 1 (2020) https://doi.org/10.1007/s41781-019-0032-5
- Zlokapa, A., Anand, A., Vlimant, J.-R., Duarte, J.M., Job, J., Lidar, D., Spiropulu, M.: Charged particle tracking with quantum annealing-inspired opti- mization. Quantum Machine Intelligence 3, 27 (2021) <u>https://doi.org/10.1007/s42484-021-00054-w</u>
- Stimpfl-Abele, G., Garrido, L.: Fast track finding with neural networks. Computer Physics Communications 64(1), 46–56 (1991) https://doi.org/10.1016/0010-4655(91)90048-P
- Funcke, L., Hartung, T., Heinemann, B., Jansen, K., Kropf, A., K"uhn, S., Meloni, F., Spataro, D., T"uys"uz, C., Yap, Y.C.: Studying quantum algorithms for particle track reconstruction in the LUXE experiment. J. Phys. Conf. Ser. 2438(1), 012127 (2023) https://doi.org/10.1088/1742-6596/2438/1/012127
- Crippa, A., et al.: Quantum algorithms for charged particle track reconstruction in the LUXE experiment. DESY-23-045, MIT-CTP/5481, arXiv:2304.01690 (2023)
- Nicotra, D., Lucio Martinez, M., Vries, J.A., Merk, M., Driessens, K., Westra, R.L., Dibenedetto, D., C´ampora P´erez, D.H.: A quantum algorithm for track reconstruction in the LHCb vertex detector. JINST 18(11), 11028 (2023) https://doi.org/10.1088/1748-0221/18/11/P11028
- Schwaegerl, T., Issever, C., Jansen, K., Khoo, T.J., Kuehn, S., Tueysuez, C., Weber, H.: Particle track reconstruction with noisy intermediate-scale quantum computers (2023) arXiv:2303.13249
- Brown, C., Spannowsky, M., Tapper, A., Williams, S., Xiotidis, I.: Quan- tum Pathways for Charged Track Finding in High-Energy Collisions (2023) arXiv:2311.00766 [hep-ph]
- Tueysuez, C., Rieger, C., Novotny, K., Demirk¨oz, B., Dobos, D., Potamianos, K., Vallecorsa, S., Vlimant, J.-R., Forster, R.: Hybrid quantum classical graph neural networks for particle track reconstruction. Quantum Machine Intelligence 3(2), 29 (2021) <u>https://doi.org/10.1007/s42484-021-00055-9</u>
- Chan, W.Y., Akiyama, D., Arakawa, K., Ganguly, S., Ka ji, T., Sawada, R., Tanaka, J., Terashi, K., Yorita, K.: Application of quantum computing tech- niques in particle tracking at LHC. Technical report, CERN, Geneva (2023). <u>https://cds.cern.ch/record/2869559</u>
- Magano, D., et al.: Quantum speedup for track reconstruction in particle acceler- ators. Phys. Rev. D 105(7), 076012 (2022) https://doi.org/10.1103/PhysRevD.105.076012

Classical ML Approaches

- There are also studies using CNN & Point Net at BES-III
- Silicon hits can be regarded as "nodes" & connected segments as "edges"
- Computing time scales linearly with number of tracks

QUBO

Lucy Linder's Master thesis

$$O(a, b, T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j,$$

$$S_{ij} = \frac{1 - \frac{1}{2} (|\delta(q/p_{Ti}, q/p_{Tj})| + max(\delta\theta_i, \delta\theta_j))}{(1 + H_i + H_j)^2},$$

$$a_i = \alpha \left(1 - e^{\frac{|d_0|}{\gamma}} \right) + \beta \left(1 - e^{\frac{|z_0|}{\lambda}} \right),$$

- $b_{ij} = 0$ (if no shared hit), = 1 (if conflict), = $-S_{ij}$ (if two hits are shared)
- α , β , γ and λ are tunable parameters, taken to be 0.5, 0.2, 1.0 and 0.5

D-Wave Studies

Lucy Linder's Master thesis

• Impact of parameters in the bias weights a_i

Multiple Solution Instances

- 3 parameters (N_I, N_E, N_S) in this sub-QUBO method.
- Extract N_I quasi-optimal solutions from full-QUBO classically.
- Randomly select N_s solution instances from N_l .
- Focus on particular binary variable x_i. Rank them in accordance to how much they vary over N_S solution instances. Highly varying x_i will be included in the sub-QUBO model.
- Pick-up process of N_S solution from quantum computing is repeated N_E times & N_E sub-QUBO models are considered.
- Returns a pool of $N_{\rm I}$ solutions & the best solution will be chosen.

Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606

Sub-QUBO Methods

Algorithm 2. Proposed Hybrid Annealing Method

- 1: procedure Proposed Method with Multi-Instances
- for $(i = 1; i \le N_I; i + +)$ do 2:
- $X_i \leftarrow \text{Initialize}(\text{QUBO})$ 3:
- 4: $Pool \leftarrow AddInstancePool(Pool, X_i)$
- $X_{best} \leftarrow \text{FindBest(Pool)}$ 5:
- while not converged do 6:
- 7: for $(i = 1; i \le N_I; i + +)$ do
- 8: $X_i \leftarrow \text{Optimize}(\text{QUBO}, X_i)$

 \triangleright Using a classical computer

9: **for**
$$(i = 1; i \le N_E; i + +)$$
 do

10:
$$X_1, X_2, \dots, X_{N_S} \leftarrow \text{SelectInstance(Pool, N_S)}$$

11: **for**
$$(j = 1; j \le n; j + +)$$
 do

12: **for**
$$(k = 1; k \le N_S; k + +)$$
 do

13:
$$c_j \leftarrow c_j + x_{k,j}$$

14: $d_j \leftarrow |c_j - \frac{N_S}{2}|$

14:
$$d_j \leftarrow |c_j - c_j|$$

- subQUBO \leftarrow Extract(ArgSort(d_1, d_2, \cdots, d_n), m, X_t) 15:
- $X' \leftarrow \text{Optimize}(\text{subQUBO}, X_t)$ 16:

 \triangleright Using an Ising machine

 $Pool \leftarrow AddInstancePool(Pool, X')$ 17:

18: $X_{best} \leftarrow \text{FindBest(Pool)}$

- Pool \leftarrow ArrangeInstancePool(Pool, N_I) 19:
- 20: return $f(X_{best}), X_{best}$

Y. Atobe, M. Tawada, N. Togawa, IEEE Trans. Comp. 71, 10 (2022) 2606

Algorithm 4. Qbsolv[10] 1: procedure QBSOLV $X \leftarrow \text{Initialize}(\text{QUBO})$ $X_{best} \leftarrow \text{TabuSeach}(\text{QUBO}, X)$ 3: index \leftarrow OrderByImpact(QUBO, X_{best}) while not converged do 5: 6: for (i = 0; i < Size(QUBO); i + = Size(subQUBO)) do 7: $subQUBO \leftarrow Decompose(QUBO,$ $index[i:i+Size(subQUBO)-1], X_{best})$ subX \leftarrow Optimize(subQUBO, X_{best}) 8: 9: $X[index[i:i+Size(subQUBO)-1]] \leftarrow subX$ $X \leftarrow \text{TabuSearch}(\text{QUBO}, X)$ 10: index \leftarrow OrderByImpact(QUBO, X) 11: if $f(X) < f(X_{best})$ then 12: 13: $X_{hest} \leftarrow X$

14: return
$$f(X_{best}), X_{best}$$

