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Heterogeneous Computing and Portability

Current hardware accelerators in modern (pre-)exascale supercomputers

Machine GPU vendors language
Frontier AMD ROCm
Aurora Intel oneAPI
LUMI AMD ROCm

Polaris NVIDIA CUDA
Perlmutter NVIDIA CUDA

Two Types of Portability:

Functional Portability
The ability for a single code to
run anywhere.

Performance Portability
The ability for a single code to
run well anywhere.
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Performance Portability Frameworks

Figure: Hardware support of portability layers1

1Mohammad Atif et al. “Evaluating Portable Parallelization Strategies for Heterogeneous
Architectures in High Energy Physics”. In: arXiv preprint (2023).
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GenVector Package

GenVector is a large package (∼ 11k lines) within ROOT enabling fundamental
operations for HEP analysis
• 2, 3 and 4 dimensional physical vectors
• coordinate systems: Cartesian, Polar, and so forth
• user can specify the underlying scalar type, say single or double precision

floats
• more advanced operations: rotations, Lorentz and Poincare transformations

GenVectorX
Extend GenVector to parallel execution on NVIDIA GPUs via CUDA and other
backends via SYCL, while retaining performance execution and user friendly API.
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SYCL Computational Model

SYCL is a cross-platform abstraction layer that for a “single-source” code using
modern ISO C++. Two notable implementations:
• Intel(R) oneAPI Toolkit
• AdaptiveCPP2 (before openSYCL/hipSYCL)

Memory management
• buffers and accessors (BUF), handled entirely by the SYCL runtime
• unified shared memory pointers (PTR), explicitly defined by the user

Kernel definition
• lambda functions, optionally named
• named function objects, same functionality as any C++ function object

2Aksel Alpay et al. “Exploring the Possibility of a HipSYCL-Based Implementation of OneAPI”. In:
International Workshop on OpenCL. IWOCL’22. ACM, 2022.
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From CUDA to SYCL3

Figure: Index Hierarchy

Table: Execution model

CUDA SYCL
Thread work-item
Warp sub-group
Block work-group
Grid ND-range

3James Reinders et al. Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL. 2021.
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Example: Invariant Masses

Figure: SYCL function object

template <c lass Scalar , c lass Vector>
c lass Invar iantMassesKernel
{

p u b l i c :
Invar iantMassesKernel
( LVector * v1 , LVector * v2 , Scalar *m, s i z e t

n )
: d v1 ( v1 ) , d v2 ( v2 ) , d m (m) , N( n ) { }

vo id opera tor ( ) ( syc l : : nd i tem<1> i tem ) const
{

s i z e t i d = i tem . g e t g l o b a l i d ( ) . get ( 0 ) ;
i f ( i d < N)
{

LVector w = d v1 [ i d ] + d v2 [ i d ] ;
d m [ i d ] = w. mass ( ) ;

}

}

p r i v a t e :
LVector d v1 ;
LVector d v2 ;
Scalar d m ;
s i z e t N;

} ;

Figure: CUDA Kernel

template <c lass Scalar , c lass LVector>
g l o b a l vo id Invar iantMassesKernel

( LVector * v1 , LVector * v2 , Scalar *m, s i z e t N)
{

i n t i d = blockDim . x * b lock Idx . x + th read Idx
. x ;

i f ( i d < N)
{

LVector w = v1 [ i d ] + v2 [ i d ] ;
m[ i d ] = w. mass ( ) ;

}

}
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Code Similarity

Given a problem and a set of platforms (here CUDA, SYCL and CPU), code
similarity is a measure of similarity between code bases that takes value in [0, 1].

Table: Code Similarity against pure C++ code

Similarity Platform Problem

0.9694 CUDA Invariant Masses
0.9715 SYCL Invariant Masses

High similarity =⇒ only specialize small regions of code with CUDA and SYCL
The effort in maintaining SYCL code is comparable with CUDA code, but

CUDA =⇒ NVIDIA GPUs

SYCL =⇒ multiple backends
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Experimental Setting

Four computing environments:

1 NVIDIA GeForce RTX 3060 using CUDA 12.2

2 NVIDIA L4 using CUDA 12.3

3 NVIDIA A100 40GB PCIe using CUDA 12.2

4 AMD MI250X using ROCm 5.3.3

Questions:
• Can we achieve performance portability? On which platforms?
• If any difference is found, can we identify its root cause?
• Is there any difference between SYCL memory management strategies?
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Scaling: Kernel Execution Time

Figure: RTX3060
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Figure: L4
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Figure: A100
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Figure: MI250X
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NVIDIA GPUs: Total Execution Time Breakdown

Figure: RTX3060 Figure: L4 Figure: A100
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CUDA memcpy HtoD
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Event

Kernel
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What we did so far

• We detailed the migration to both SYCL and CUDA of a large, complex, C++
code base, providing guidance and insights regarding the analogies and
differences between the two frameworks for other developers interested in
migrating their own codes.
• We evaluated code divergence of GenVectorX, to estimate the benefits in

maintaining a single source code without specializing regions of code for
specific targets.
• We empirically showed performance portability of the migrated SYCL code

on different platforms and architectures.
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What needs to be done

• Integration within ROOT is work in progress.
• We will carry out performance evaluation on other platforms and

architectures, namely Intel GPUs and Risc-V.
• We will extend GenVectorX to tackle jagged arrays.
• We will implement SYCL support in cling for just-in-time compilation.
• Open problem: dealing with filtering and skimming.

More infos:
• Code is available of GitHub:
https://github.com/root-project/genvectorx

• Preprint: https://arxiv.org/abs/2312.02756
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Code Similarity: Evaluation

Code similarity is calculated as4

1 − CD(a, p,H), CD(a, p,H) =

(
|H|
2

)−1 ∑
(i,j)∈H×H

di,j(p, a) (1)

where di,j(p, a) represents the distance between the source code required to
solve problem p using application a on platforms i and j (from platform set H). We
adopt the Jaccard distance defined as di,j(p, a) = 1 − si,j(p, a), where

si,j(p, a) =

∣∣∣∣∣∣ci(a, p) ∩ cj(a, p)
ci(a, p) ∪ cj(a, p)

∣∣∣∣∣∣ . (2)

Here, ci and cj represent the set of source lines required to compile application a
and execute problem p for platforms i and j, respectively.

4Stephen Lien Harrell et al. “Effective Performance Portability”. In: 2018 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC). 2018, pp. 24–36.
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Hardware Specs

The main features of the GPUs that are relevant in our case are summarized here:

Table: GPUs specification

RTX3060 L4 A100 MI250X
Vendor NVIDIA NVIDIA NVIDIA AMD
Architecture Ampere Ada Lovelace Ampere CDNA2
CUDA Capability 86 89 80 -
Global Memory (GB) 12 24 40 128
Peak FP64 (TFLOPs) 6.3 15.5 9.7 47.8
Peak Bandwidth (GB/s) 360.0 300.0 1555.0 3200.0
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