
Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

An empirical performance-portability evaluation for
Lorentz Vectors computations via SYCL

Monica Dessole, Jolly Chen, Axel Naumann

ROOT team,
EP SFT, CERN

13th March 2024

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 1 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

1 Background

2 Migrating from CUDA to SYCL

3 Numerical Experiments

4 Conclusions and future work

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 2 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

Heterogeneous Computing and Portability

Current hardware accelerators in modern (pre-)exascale supercomputers

Machine GPU vendors language
Frontier AMD ROCm
Aurora Intel oneAPI
LUMI AMD ROCm

Polaris NVIDIA CUDA
Perlmutter NVIDIA CUDA

Two Types of Portability:

Functional Portability
The ability for a single code to
run anywhere.

Performance Portability
The ability for a single code to
run well anywhere.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 3 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

Performance Portability Frameworks

Figure: Hardware support of portability layers1

1Mohammad Atif et al. “Evaluating Portable Parallelization Strategies for Heterogeneous
Architectures in High Energy Physics”. In: arXiv preprint (2023).

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 4 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

GenVector Package

GenVector is a large package (∼ 11k lines) within ROOT enabling fundamental
operations for HEP analysis
• 2, 3 and 4 dimensional physical vectors
• coordinate systems: Cartesian, Polar, and so forth
• user can specify the underlying scalar type, say single or double precision

floats
• more advanced operations: rotations, Lorentz and Poincare transformations

GenVectorX
Extend GenVector to parallel execution on NVIDIA GPUs via CUDA and other
backends via SYCL, while retaining performance execution and user friendly API.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 5 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

SYCL Computational Model

SYCL is a cross-platform abstraction layer that for a “single-source” code using
modern ISO C++. Two notable implementations:
• Intel(R) oneAPI Toolkit
• AdaptiveCPP2 (before openSYCL/hipSYCL)

Memory management
• buffers and accessors (BUF), handled entirely by the SYCL runtime
• unified shared memory pointers (PTR), explicitly defined by the user

Kernel definition
• lambda functions, optionally named
• named function objects, same functionality as any C++ function object

2Aksel Alpay et al. “Exploring the Possibility of a HipSYCL-Based Implementation of OneAPI”. In:
International Workshop on OpenCL. IWOCL’22. ACM, 2022.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 6 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

From CUDA to SYCL3

Figure: Index Hierarchy

Table: Execution model

CUDA SYCL
Thread work-item
Warp sub-group
Block work-group
Grid ND-range

3James Reinders et al. Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL. 2021.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 7 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

Example: Invariant Masses

Figure: SYCL function object

template <c lass Scalar , c lass Vector>
c lass Invar iantMassesKernel
{

p u b l i c :
Invar iantMassesKernel
(LVector * v1 , LVector * v2 , Scalar *m, s i z e t

n)
: d v1 (v1) , d v2 (v2) , d m (m) , N(n) { }

vo id opera tor () (syc l : : nd i tem<1> i tem) const
{

s i z e t i d = i tem . g e t g l o b a l i d () . get (0) ;
i f (i d < N)
{

LVector w = d v1 [i d] + d v2 [i d] ;
d m [i d] = w. mass () ;

}

}

p r i v a t e :
LVector d v1 ;
LVector d v2 ;
Scalar d m ;
s i z e t N;

} ;

Figure: CUDA Kernel

template <c lass Scalar , c lass LVector>
g l o b a l vo id Invar iantMassesKernel

(LVector * v1 , LVector * v2 , Scalar *m, s i z e t N)
{

i n t i d = blockDim . x * b lock Idx . x + th read Idx
. x ;

i f (i d < N)
{

LVector w = v1 [i d] + v2 [i d] ;
m[i d] = w. mass () ;

}

}

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 8 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

Code Similarity

Given a problem and a set of platforms (here CUDA, SYCL and CPU), code
similarity is a measure of similarity between code bases that takes value in [0, 1].

Table: Code Similarity against pure C++ code

Similarity Platform Problem

0.9694 CUDA Invariant Masses
0.9715 SYCL Invariant Masses

High similarity =⇒ only specialize small regions of code with CUDA and SYCL
The effort in maintaining SYCL code is comparable with CUDA code, but

CUDA =⇒ NVIDIA GPUs

SYCL =⇒ multiple backends

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 9 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

Experimental Setting

Four computing environments:

1 NVIDIA GeForce RTX 3060 using CUDA 12.2

2 NVIDIA L4 using CUDA 12.3

3 NVIDIA A100 40GB PCIe using CUDA 12.2

4 AMD MI250X using ROCm 5.3.3

Questions:
• Can we achieve performance portability? On which platforms?
• If any difference is found, can we identify its root cause?
• Is there any difference between SYCL memory management strategies?

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 10 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

Scaling: Kernel Execution Time

Figure: RTX3060

410 510 610 710 810
Number of Particles

5−10

4−10

3−10

2−10

1−10

R
un

tim
e

(s
)

oneAPI (BUF)
oneAPI (PTR)
AdaptiveCPP (BUF)
AdaptiveCPP (PTR)
CUDA

Figure: L4

410 510 610 710 810
Number of Particles

5−10

4−10

3−10

2−10

1−10

R
un

tim
e

(s
)

oneAPI (BUF)
oneAPI (PTR)
AdaptiveCPP (BUF)
AdaptiveCPP (PTR)
CUDA

Figure: A100

410 510 610 710 810
Number of Particles

5−10

4−10

3−10

2−10

R
un

tim
e

(s
)

oneAPI (BUF)
oneAPI (PTR)
AdaptiveCPP (BUF)
AdaptiveCPP (PTR)
CUDA

Figure: MI250X

410 510 610 710 810
Number of Particles

4−10

3−10

2−10

R
un

tim
e

(s
)

oneAPI (BUF)
oneAPI (PTR)
AdaptiveCPP (BUF)
AdaptiveCPP (PTR)

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 11 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

NVIDIA GPUs: Total Execution Time Breakdown

Figure: RTX3060 Figure: L4 Figure: A100

B
U

F
 o

ne
A

P
I

P
T

R
 o

ne
A

P
I

B
U

F
 A

C
P

P
P

T
R

 A
C

P
P

 C
U

D
A

B
U

F
 o

ne
A

P
I

P
T

R
 o

ne
A

P
I

B
U

F
 A

C
P

P
P

T
R

 A
C

P
P

 C
U

D
A

B
U

F
 o

ne
A

P
I

P
T

R
 o

ne
A

P
I

B
U

F
 A

C
P

P
P

T
R

 A
C

P
P

 C
U

D
A

B
U

F
 o

ne
A

P
I

P
T

R
 o

ne
A

P
I

B
U

F
 A

C
P

P
P

T
R

 A
C

P
P

 C
U

D
A0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
ot

al
 ti

m
e

(s
)

Implementation
Number of particles

212 242 262 272

310×

CUDA Memory Operations

CUDA memcpy HtoD

CUDA memcpy DtoH

InvariantMasses

Event

Kernel

Memory

Module

Stream

CUDA Kernels

CUDA API Calls

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 12 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

What we did so far

• We detailed the migration to both SYCL and CUDA of a large, complex, C++
code base, providing guidance and insights regarding the analogies and
differences between the two frameworks for other developers interested in
migrating their own codes.
• We evaluated code divergence of GenVectorX, to estimate the benefits in

maintaining a single source code without specializing regions of code for
specific targets.
• We empirically showed performance portability of the migrated SYCL code

on different platforms and architectures.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 13 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

What needs to be done

• Integration within ROOT is work in progress.
• We will carry out performance evaluation on other platforms and

architectures, namely Intel GPUs and Risc-V.
• We will extend GenVectorX to tackle jagged arrays.
• We will implement SYCL support in cling for just-in-time compilation.
• Open problem: dealing with filtering and skimming.

More infos:
• Code is available of GitHub:
https://github.com/root-project/genvectorx

• Preprint: https://arxiv.org/abs/2312.02756

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 14 / 18

https://github.com/root-project/genvectorx
https://arxiv.org/abs/2312.02756

Thank you for listening!

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

References I

Alpay, Aksel et al. “Exploring the Possibility of a HipSYCL-Based
Implementation of OneAPI”. In: International Workshop on OpenCL.
IWOCL’22. ACM, 2022.
Atif, Mohammad et al. “Evaluating Portable Parallelization Strategies for

Heterogeneous Architectures in High Energy Physics”. In: arXiv preprint
(2023).
Harrell, Stephen Lien et al. “Effective Performance Portability”. In: 2018

IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC). 2018, pp. 24–36.
Reinders, James et al. Data Parallel C++: Mastering DPC++ for Programming

of Heterogeneous Systems using C++ and SYCL. 2021.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 16 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

Code Similarity: Evaluation

Code similarity is calculated as4

1 − CD(a, p,H), CD(a, p,H) =

(
|H|
2

)−1 ∑
(i,j)∈H×H

di,j(p, a) (1)

where di,j(p, a) represents the distance between the source code required to
solve problem p using application a on platforms i and j (from platform set H). We
adopt the Jaccard distance defined as di,j(p, a) = 1 − si,j(p, a), where

si,j(p, a) =

∣∣∣∣∣∣ci(a, p) ∩ cj(a, p)
ci(a, p) ∪ cj(a, p)

∣∣∣∣∣∣ . (2)

Here, ci and cj represent the set of source lines required to compile application a
and execute problem p for platforms i and j, respectively.

4Stephen Lien Harrell et al. “Effective Performance Portability”. In: 2018 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC). 2018, pp. 24–36.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 17 / 18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

Hardware Specs

The main features of the GPUs that are relevant in our case are summarized here:

Table: GPUs specification

RTX3060 L4 A100 MI250X
Vendor NVIDIA NVIDIA NVIDIA AMD
Architecture Ampere Ada Lovelace Ampere CDNA2
CUDA Capability 86 89 80 -
Global Memory (GB) 12 24 40 128
Peak FP64 (TFLOPs) 6.3 15.5 9.7 47.8
Peak Bandwidth (GB/s) 360.0 300.0 1555.0 3200.0

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 18 / 18

	Background
	Migrating from CUDA to SYCL
	Numerical Experiments
	Conclusions and future work
	References

