Experiments

An empirical performance-portability evaluation for
Lorentz Vectors computations via SYCL

Monica Dessole, Jolly Chen, Axel Naumann

ROQOT team,
EP SFT, CERN

13th March 2024

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024

© Background

® Migrating from CUDA to SYCL

® Numerical Experiments

@ Conclusions and future work

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 2/18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References
@00 [e]e]e]e] [e]e]e} [e]e]e}

(e}

Heterogeneous Computing and Portability

Current hardware accelerators in modern (pre-)exascale supercomputers

Machine | GPU vendors | language
Frontier AMD ROCm
Aurora Intel oneAPI

LUMI AMD ROCm
Polaris NVIDIA CUDA
Perlmutter NVIDIA CUDA

Two Types of Portability:

Functional Portability

Performance Portability

The ability for a single code to The ability for a single code to
run anywhere. run well anywhere.
Monica Dessole (monica.dessole@cern.ch) ACAT24

13th March 2024 3/18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References
[e]e]e} [e]e]e} (e}

oeo [e]e]e]e]

Performance Portability Frameworks

Figure: Hardware support of portability layers'

feature .
complete for hip 4.0.1/
select GPUs clang
i d via
CHIP-SPV native an
proto OpenMP rototype oneAPI::dpl
&7 0 target offload P typ!

g++ & tbb

via SYCL

"Mohammad Atif et al. “Evaluating Portable Parallelization Strategies for Heterogeneous
Architectures in High Energy Physics”.

Monica Dessole (monica.dessole@cern.ch)

ACAT24 13th March 2024 4/18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References
ooe [e]e]e]e] [e]e]e} [e]e]e} (e}

GenVector Package

GenVector is a large package (~ 11k lines) within ROOT enabling fundamental
operations for HEP analysis

e 2, 3 and 4 dimensional physical vectors
® coordinate systems: Cartesian, Polar, and so forth

® user can specify the underlying scalar type, say single or double precision
floats

° more advanced operations: rotations, Lorentz and Poincare transformations

Extend GenVector to parallel execution on NVIDIA GPUs via CUDA and other
backends via SYCL, while retaining performance execution and user friendly API.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 5/18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

[Je]e]e] [e]e]e} [e]e]e} (e}

SYCL Computational Model

SYCL is a cross-platform abstraction layer that for a “single-source” code using
modern ISO C++. Two notable implementations:

® Intel(R) oneAPI Toolkit
* AdaptiveCPP? (before openSYCL/hipSYCL)

Memory management

* buffers and accessors (BUF), handled entirely by the SYCL runtime
* unified shared memory pointers (PTR), explicitly defined by the user

Kernel definition
® |lambda functions, optionally named
* named function objects, same functionality as any C++ function object

2Aksel Alpay et al. “Exploring the Possibility of a HipSYCL-Based Implementation of OneAP!”.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 6/18

s and future work

Migrating from CUDA to SYCL \ Experiments
0e00

From CUDA to SYCL?

Figure: Index Hierarchy
Table: Execution model

Work-group of

(4,4,4) work-items
s oo CUDA | sYCL
4 work-items

Thread | work-item
Warp sub-group

dimension 1

of ND-range
ef‘:ir;!:'.:"u.‘,l o Block | work-group
£ .
o s O Grid ND-range
dimension 2 dimension2 & dimension 0
of ND-range of work-group of sub-group
ND-Range Work-group Sub-group Work-item

8James Reinders et al. Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous
Systems using C++ and SYCL. 2021.

Monica Dessole (monica.dessole@cern.ch) 13th March 2024 7/18

ACAT24

Monica Dessole (monica.dessole@cer

Migrating from CUDA to S
[e]e] o]

Example: Invariant Masses

Figure: SYCL function object

template <class Scalar, class Vector-
class InvariantMassesKernel
{
public:
InvariantMassesKernel
(LVector «v1, LVector «v2, Scalar .m, size.t

n)
dvi(vl), d.v2(v2), d.m(m), N(n) {}
void operator () (sycl::nd.item-1- item) const

size.t id - item get.global.id () get(0):
if (id < N)
{
LVector w = d.v1[id] + d.v2[id]
dm[id] = w mass() :

)

private:
LVector d.v1:
LVector d.v2:
Scalar d.m
size-t N:

ACAT24

Figure: CUDA Kernel

template -class Scalar, class LVector-
--global.. void InvariantMassesKernel
(LVector «v1, LVector «v2, Scalar .m, size_-t N)
{
int id - blockDim x « blockldx.x + threadldx
X
it (id < N)
{
LVector w = vi[id] + v2[id]
m[id] = w.mass() :

8/18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References
[e]e]e} [e]e]e]] [e]e]e} [e]e]e}

(e}

Code Similarity

Given a problem and a set of platforms (here CUDA, SYCL and CPU), code
similarity is a measure of similarity between code bases that takes value in [0, 1].

Table: Code Similarity against pure C++ code

Similarity Platform Problem

0.9694 CUDA Invariant Masses
0.9715 SYCL Invariant Masses

High similarity = only specialize small regions of code with CUDA and SYCL
The effort in maintaining SYCL code is comparable with CUDA code, but

CUDA — NVIDIA GPUs
SYCL = multiple backends

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 9/18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References
[e]e]e} [e]e]e]e]

@00 [e]e]e} (e}

Experimental Setting

Four computing environments:
@ NVIDIA GeForce RTX 3060 using CUDA 12.2
® NVIDIA L4 using CUDA 12.3
© NVIDIA A100 40GB PCle using CUDA 12.2
@ AMD MI250X using ROCm 5.3.3

Questions:
® Can we achieve performance portability? On which platforms?
e If any difference is found, can we identify its root cause?
* |s there any difference between SYCL memory management strategies?

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 10/18

Runtine (9

Runime (5)

Numerical Experiments
oeo

Figure: RTX3060

—=—oneAPT(BUF)
—— oneAPI (PTR)

—~— AdaptiveCPP (BUF,
—+— AdaptiveCPP (PTR]

Figure: L4

Rumme 5
g

—— OneAPT (BUF)
—=— oneAPI (PTR)

—~— AdaptiveCPP (BUF|
—+— AdaptiveCPP (PTR

—-— CUDA

107 107
- 0
10 10
L L L L L 1 L L L L
10 10° 10° 10 10° 10" 10° 10° 10" 10°
N of paries Nurber of Partces
Figure: A100 Figure: MI250X

— nneﬁs: Eg%gg ? 107 [+ oneAPI (BUF)

—o— one e
10%| —=— AdaptiveCPP' (BUF] - . 2’;:3;2::)(&;

—— AdaptiveCPP (PTR
—+— CUDA

10°
NumberofPariies

Monica Dessole (monica.dessole@cern.ch)

ACAT24

—+— AdaptiveCPP (PTR]

10°
Number of Patces

11/18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References

[e]e]e} [e]e]e]e] ooe [e]e]e} (e}

NVIDIA GPUs: Total Execution Time Breakdown

Figure: RTX3060 Figure: L4 Figure: A100

2 @ z CUDA Memory Operations
2 2 2 I cuos memery oD
= :‘g = =] T ———
T s
3 5
© 14 e s CUDA Kernels
[pe—
1.2 ‘CUDA AP Calls.
. e
08
ool Kool
04 I veroy
g Module
0.2]]

B svean

Teoox Tooo< aaee< = = = =
2ages 3a28% 2ades gaaa s g T zagas

OO0 31531 GO <5 < $ $
22223 22323 2833 22993 2 2 2 4
Sour Soux SSux 55530 § 5 55550

S5 5 =]
afas 2ema praoh SEas 3 5 E

o 24 2 2 an a E E

Py P 2% P
Implementation (Rpigmentaton ies Implementation

Number of particles Imber of particles

Monica Dessole (monica.dessole@cern,

ACAT24

12/18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References
[e]e]e} [e]e]e]e] [e]e]e} @00 (e}

What we did so far

* We detailed the migration to both SYCL and CUDA of a large, complex, C++
code base, providing guidance and insights regarding the analogies and
differences between the two frameworks for other developers interested in
migrating their own codes.

* We evaluated code divergence of GenVectorX, to estimate the benefits in
maintaining a single source code without specializing regions of code for
specific targets.

* We empirically showed performance portability of the migrated SYCL code
on different platforms and architectures.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 13/18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References
[e]e]e} [e]e]e]e] [e]e]e} oeo (e}

What needs to be done

¢ Integration within ROQOT is work in progress.

We will carry out performance evaluation on other platforms and
architectures, namely Intel GPUs and Risc-V.

We will extend GenVectorX to tackle jagged arrays.
* We will implement SYCL support in cling for just-in-time compilation.
Open problem: dealing with filtering and skimming.

More infos:

® Code is available of GitHub:
https://github.com/root-project/genvectorx

® Preprint: https://arxiv.org/abs/2312.02756

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 14/18

https://github.com/root-project/genvectorx
https://arxiv.org/abs/2312.02756

Thank you for listening!

CUDA to SYCL xperiments ns and future work References
(oo}

References |

Alpay, Aksel et al. “Exploring the Possibility of a HipSYCL-Based
Implementation of OneAPI”. |n: Iniernational Workshop on OpenCL.
IWOCL22. ACM, 2022.

Atif, Mohammad et al. “Evaluating Portable Parallelization Strategies for
Heterogeneous Architectures in High Energy Physics”. [n: arxXiv preprint
(2023).

Harrell, Stephen Lien et al. “Effective Performance Portability”. [n: 2075
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC). 2018, pp. 24-36.

Reinders, James et al. Data Parallel C++: Mastering DPC++ for Programming
of Heterogeneous Systems using C++ and SYCL. 2021.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024

Background Migrating from CUDA to SYCL Numerical Experiments

s and future work References
[e]e]e} [e]e]e]e] [e]e]e}

e0

Code Similarity: Evaluation

Code similarity is calculated as*

-1
1 - CD(a,p, H), CD(a,p,H):(';”) Z dij(p.a) (1)

(ij)eHxH

where dj;(p, a) represents the distance between the source code required to
solve problem p using application a on platforms i and j (from platform set H). We
adopt the Jaccard distance defined as d;j(p,a) = 1 - s;j(p, a), where

Si,j(p’ a) = (2)

ci(a,p)n cf(a,p)l
ci(a.p)Uci(a.p)|

Here, ¢; and ¢; represent the set of source lines required to compile application a
and execute problem p for platforms i and j, respectively.

4Stephen Lien Harrell et al. “Effective Performance Portability”. In: 20718 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPE). 2048, pp=24—36.

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 17/18

Background Migrating from CUDA to SYCL Numerical Experiments Conclusions and future work References
[e]e]e} [e]e]e]e] [e]e]e} [e]e]e} oce

Hardware Specs

The main features of the GPUs that are relevant in our case are summarized here:

Table: GPUs specification

RTX3060 L4 A100 MI250X
Vendor NVIDIA NVIDIA NVIDIA AMD
Architecture Ampere Ada Lovelace Ampere CDNA2
CUDA Capability 86 89 80 -
Global Memory (GB) 12 24 40 128
Peak FP64 (TFLOPSs) 6.3 15.5 9.7 47.8
Peak Bandwidth (GB/s) 360.0 300.0 1555.0 3200.0

Monica Dessole (monica.dessole@cern.ch) ACAT24 13th March 2024 18/18

	Background
	Migrating from CUDA to SYCL
	Numerical Experiments
	Conclusions and future work
	References

