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Introduction

➜ Yet more Objects for Data Analysis!
[yoda.hepforge.org]

➜ lightweight and general purpose library
for binned statistical data analysis

➜ first released in 2013

➜ written in C++ and programmatically usable
from C++ and Python, complemented by a
set of command-line tools for dataset inspection,
manipulation and combination

➜ emerged from the sub-field of Monte Carlo event generator analysis and tuning in HEP,
but library is deliberately agnostic of any particular application

➜ tools wrapping around YODA include [Rivet] and [Contur]

➜ as such, widely used for event generator analysis, tuning,
analysis preservation and reinterpretation efforts
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Summary statistics

Analytic first- and second-order statistical moments for probably density function f (x) ≡ dP/dx

⟨x⟩ ≡
∫

x∈X
xf (x) dx

⟨x2⟩ ≡
∫

x∈X
x2f (x) dx

σ2(x) ≡ ⟨x2⟩ − ⟨x⟩2
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Weighted moments

Weighted mean and variance:
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∑

n wnxn∑
n wn

σ2(x) = B ·
∑

n wn
(
xn −

∑
m wmxm

)2(∑
n wn

) =

(∑
n wnx2

n
)
· (
∑

n wn)−
(∑

n wnxn
)2(∑

n wn
)2 −

∑
n w2

n

with weighted Bessel factor:
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for effective fill count:

Neff =
(
∑

n wn)2∑
n w2

n

ACAT2024, Stony Brook, 11-15 Mar 2024 chris.g@cern.ch 4/19



CHRISTIAN GÜTSCHOW

CONSISTENT MULTI-DIFFERENTIAL HISTOGRAMMING WITH YODA2

Histograms

➜ generalise measured variable x to vector variable-space Ω

➜ composed of vectors ω with differential volume elements dΩ

➜ partition Ω into disjoint (sub)set of bins {Ωb} ⊂ Ω

➜ moments in each bin b converge to summary properties of that bin’s variable-space partition

⟨ω(i)⟩b ≡
∫
ω∈Ωb

ω(i)f (ω) dΩ

⟨ω(i)ω(j)⟩b ≡
∫
ω∈Ωb

ω(i)ω(j)f (ω) dΩ

➜ need to recover unbinned values when expanding the partition to whole space

➜ need to recover differential properties of the pdf itself as Ωb → dΩ(ω)

➜ merging bins must converge to the same result as having originally constructed
a lower-dimensional or less finely binned partition of space
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Design principles I

➜ Differential consistency

➜ unlike list of (weighted) fill counts, histogram is a binned best-estimate of a continuous distribution

➜ crucial to take f (x) ≡ dP/dx notation literally since optimal estimation requires non-uniform binning

➜ Continuous aggregation

➜ histograms need to be “live” objects containing update-able variables

➜ single pass over all events in memory à la numpy or Excel often not feasible in HEP

➜ Weighted statistical moments

➜ weighted statistical moments required to compute the key summary statistics of their bins

➜ a profile also stores the statistical moments of a further unbinned quantity

➜ Integral consistency

➜ ability to project higher- into lower-dimensional binnings without biasing integral quantities

➜ including integrally consistent constructions of binned profiles from higher-dimensional histograms
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Design principles II

➜ Separation of style from substance

➜ invariance of statistical data while varying plotting style

➜ Separation of binning from bin-content

➜ enables distinction between live (permits further data-taking) and inert classes of data-object,
with the latter being a specific representation as “values and uncertainties”

➜ User friendliness

➜ aim to provide a “clean” programmatic interface expressed in terms of statistical and
data-analytic concepts and hence well-matched to the goals and skill-sets of data scientists

➜ hide the complexity of advanced language features used internally to make high levels
of abstraction possible while enforcing statistical consistency and type-safety

➜ intentionally limited to binned statistical analysis only, with zero library dependencies
for core C++ operation, to assist embedding into applications
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Experience from YODA1

➜ design goals partially established already at the time of YODA1 release in 2013,
but structural issues motivated a ground-up rewrite

➜ limited data-object dimensionality and only continuous-valued axes supported

➜ inability to store arbitrary data-types in binnings

➜ correct but limited treatment of overflow bins

➜ no unified scheme for local and global bin indexing in multiple dimensions

➜ internal code duplication to support C++ and Python APIs for several different
dimensionalities and binned-content types

➜ mismatching of the “inert" scatter datatype from e.g. HepData to
the binned “live” objects from MC runs

➜ limited and inconvenient implementation of uncertainty breakdowns
and correlations on scatter types
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Bin partitioning

➜ new Axis class templated on edge type

➜ (classic) continuous axis triggered
by std::is_floating_point trait

➜ N bins defined by N + 1 edges,
plus under- and overflow bin

➜ active uses of IEEE 754 FP standard; infinity binning:
bin edges: -inf -1.0 -0.5 0.0 0.5 1.0 +inf
bin widths: +inf 0.5 0.5 0.5 0.5 +inf

−∞ +∞

−∞

+∞

(0, 0) (1, 0)

(0, 2) (3, 2)

(3, 3)

masked

➜ (new) discrete axis for all other types

➜ bins along discrete axis only have their edge label

➜ N bins defined by N edges, plus otherflow bin

➜ useful for multiplicities, cutflows, . . .

➜ Binning class permits slicing and marginalisaing across global fill-space
and translates local indices into a global index and vice versa
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Bin content

➜ Bin wrapper class that links bin content with the local and global binning properties

➜ every bin has a dVol() method (also dLen(), dArea() aliases in 1D and 2D)

➜ access to axis-specific quantities via templated accessor methods

➜ CRTP used to mix in axis-specific method names for first three dimensions

➜ Live content: Dbn

➜ distribution class from YODA1, now generalised to arbitrary dimensions

➜ keeps track of exact first and second order moments (and mixed moments
∑

n wnxnyn)

➜ fill provides fill method accepting next coordinate set, optional weight and optional fill fraction

➜ Inert content: Estimate

➜ a central value with an associated error breakdown

➜ errors encoded as labelled uncertainty pairs corresponding to
{down,up} variations of a nuisance parameter

➜ support for correlated/uncorrelated treatment of different NPs

➜ arithmetic operations respect (un-)correlated error treatment
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Combined bin partitioning and content

➜ new BinnedStorage class can hold arbitrary types

➜ supports index-based bin(i) and coordinate-based binAt(x) lookups

➜ supports bin masking (mask(i), maskAt(x)) to emulate “gaps" (in place of bin erasure)

BinnedStorage

Bin<ContentType>Bin<ContentType>Bin<ContentType>Bin<ContentType>Bin<ContentType>Bin<ContentType> Binning

.bins()

.numBins()

.mergeBins()

references
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A generic storage for binned quantities

BinnedStorage

FillableStorage

DbnStorage

BinnedDbn

BinnedHisto

BinnedProfile

EstimateStorage

BinnedEstimate

binning backend

introduces fill adapter

content specialisation,
inherits from AnalysisObject

dimensional specialisation

➜ new FillableStorage class inherits from BinnedStorage

➜ introduces a fill adapter that handles the bin-content manipulation for each fill call

➜ fill function returns bin position (global index) or -1 if a coordinate was nan
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Standard histograms and profiles

➜ intermediate DbnStorage layer introduces Dbn-specific methods
(e.g. global integral, variance etc.)

➜ BinnedDbn is the user-facing type with various aliases for familiar classes

➜ mixes in axis-specific method names (xMean(), yEdges(), etc.)

➜ BinnedHisto<double,int> = BinnedDbn<2,double,int>

➜ BinnedProfile<string> = BinnedDbn<2,string>

➜ Histo2D = HistoND<2> = BinnedHisto<double,double> = BinnedDbn<2,double,double>

➜ Profile1D = ProfileND<1> = BinnedProfile<double> = BinnedDbn<2,double>
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Type and dimensionality reductions

➜ live BinnedDbn objects reduce to
inert BinnedEstimate objects

➜ with Estimate1D = EstimateND<1>
= BinnedEstimate<double>

➜ slice along axis n using
EstimateND<N>().mkEstimates<n>();
to yield vector of EstimateND<N-1>

➜ 0-dimensional variants with live Counter
reducing to Estimate0D

AnalysisObject

Counter BinnedDbn

Estimate0D BinnedEstimate

ScatterND

➜ both live and inert types reduce to Scatter objects for plotting

➜ all user-facing types inherit from the AnalysisObject base class,
which provides the attribute system to store metadata

➜ all types support global scaling operations; arbitrary transformations (e.g. lambda functions)
can also be applied to all inert data types (estimates, points)
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Example: construction and filling

// declaration examples
Histo1D h1; // histogram with 1 continuous axis
Profile2D p1; // profile with 2 continuously binned axes + 1 unbinned axis
HistoND <5> h2; // histogram with 5 continuous axes

// constructor examples
Histo1D h3(10, 0, 100); // 10 bins between 0 and 100
const std::vector <double > edges = {0, 10, 20, 30, 40, 50};
Histo1D h4(edges);
BinnedHisto <int , std::string > h5({ 1, 2, 3 }, { "A", "B", "C" });

// fill examples
Histo1D h6(5, 0.0, 1.0);
h6.fill (0.2);
Profile1D p2(5, 0.0, 1.0);
p2.fill (0.2, 3.5);

// marginalisation examples
Histo2D h7 = p1.mkHisto (); //< marginalise over unbinned axis
Histo1D h8 = h7.mkMarginalHisto <1 >(); //< marginalise over secomd binned axis
Histo1D h9 = p1.mkMarginalProfile <0>(); //< marginalise over first binned axis
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Example: looping and indexing

size_t nbinsX = 4, nbinsY = 6;
double lowerX = 0, lowerY = 0;
double upperX = 4, upperY = 6;
Histo2D h2(nbinsX , lowerX , upperX ,

nbinsY , lowerY , upperY );

// loop over bins and fill with increasing weight
double w = 0;
for (auto& b : h2.bins ()) { //< iterators passes through using templated bin wrappers

h2.fill(b.xMid(), b.yMid(), ++w);
}

for (size_t idxY = 0; idxY < h2.numBinsY(true); ++idxY) { //< true includes overflows
for (size_t idxX = 0; idxX < h2.numBinsX(true); ++idxX) { //< true includes overflows

std::cout << "\t(" << idxX << "," << idxY << ")\t=\t";
std::cout << h2.bin(idxX , idxY).sumW ();

}
std::cout << std::endl;

}
std::cout << std::endl;

# H2 bins using local indices + under/overflows:
# (0,0) = 0 (1,0) = 0 (2,0) = 0 (3,0) = 0 (4,0) = 0 (5,0) = 0
# (0,1) = 0 (1,1) = 1 (2,1) = 2 (3,1) = 3 (4,1) = 4 (5,1) = 0
# (0,2) = 0 (1,2) = 5 (2,2) = 6 (3,2) = 7 (4,2) = 8 (5,2) = 0
# (0,3) = 0 (1,3) = 9 (2,3) = 10 (3,3) = 11 (4,3) = 12 (5,3) = 0
# (0,4) = 0 (1,4) = 13 (2,4) = 14 (3,4) = 15 (4,4) = 16 (5,4) = 0
# (0,5) = 0 (1,5) = 17 (2,5) = 18 (3,5) = 19 (4,5) = 20 (5,5) = 0
# (0,6) = 0 (1,6) = 21 (2,6) = 22 (3,6) = 23 (4,6) = 24 (5,6) = 0
# (0,7) = 0 (1,7) = 0 (2,7) = 0 (3,7) = 0 (4,7) = 0 (5,7) = 0
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YODA I/O
➜ generalising the existing V2 ASCII format to arbitrary dimensions and

supporting std::string-based edges required a little restructuring:

BEGIN YODA_HISTO1D_V3 /H1D_d
Path: /H1D_d
Title:
Type: Histo1D
---
# Mean: 3.470588e-01
# Integral: 1.700000e+01
Edges(A1): [0.000000e+00, 5.000000e-01, 1.000000e+00]
# sumW sumW2 sumW(A1) sumW2(A1) numEntries
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
1.000000e+01 1.000000e+02 1.000000e+00 1.000000e-01 1.000000e+00
7.000000e+00 4.900000e+01 4.900000e+00 3.430000e+00 1.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
END YODA_HISTO1D_V3

BEGIN YODA_BINNEDHISTO <S>_V3 /H1D_s
Path: /H1D_s
Title:
Type: BinnedHisto <s>
---
# Mean: 3.750000e-01
# Integral: 8.000000e+00
Edges(A1): ["A"]
# sumW sumW2 sumW(A1) sumW2(A1) numEntries
5.000000e+00 2.500000e+01 0.000000e+00 0.000000e+00 1.000000e+00
3.000000e+00 9.000000e+00 3.000000e+00 3.000000e+00 1.000000e+00
END YODA_BINNEDHISTO <S>_V3

➜ already the default on HepData! (old format still available via YODA1 option)

➜ YODA2 reader can still read old ASCII format from YODA1
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Plotting

➜ matplotlib-based plotting machinery produces self-consistent Python scripts
allowing for better customisation of plots (no YODA installation required)
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➜ plots drawn from Scatter objects

➜ final abstraction layer to seperate style choices for rendering data from statistical analysis
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Summary

➜ histograms are a powerful tool and often taken for granted

➜ summary statistics grouped into binned ranges of e.g. an independent variable

➜ fixed data size regardless of how many “fill" events are aggregated into them

➜ directly linked to core concepts in differential and integral calculus

➜ a decade after its first release, YODA backend underwent a ground-up redesign

➜ statistical analysis objects generalised to arbitrary dimensions and edge types
along different axes – with the help of modern C++ design patterns

➜ YODA 2.0.0 has been out for a couple of months now – check it out: [yoda.hepforge.org]
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Backup
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Unweighted moments

Unweighted mean and variance for finite-size sample with 1 ≤ n ≤ N:

⟨x̂⟩U ≡
∑N

n=1 xn

N

σ2
U(x̂) ≡

∑N
n=1(xn − ⟨x⟩)2

N − 1

= ⟨x2⟩U − ⟨x⟩2
U

=

∑N
n=1 x2

n

N − 1
−

(∑N
n=1 xn

)2

(N − 1)2
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Counts and efficiencies

Closely related quantities are Poisson mean and variance:

⟨x̂⟩P ≡ N

σ2
P(x̂) ≡ N

Classic Monte Carlo scaling then given by

σP(x̂)
⟨x̂⟩P

=

√
N

N
=

1
√

N

Sample efficiency for selected events Nsel from a known number of total events N is

ϵ̂ ≡
Nsel

N

Binomial statistics gives an estimator for the uncertainty on the efficiency

σ̂2(ϵ̂)B =
ϵ̂(1 − ϵ̂)

N
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Connection to differential calculus

➜ statistical histogram: a discrete approximation to entire probability density function
f (Ω) = dP/dΩ or population density dN/dΩ, not just a collection of fill counts

➜ bin measure dΩ (or ∆Ω) representing the volume element of the bin
crucial for differential consistency

➜ ∆N/∆Ω = [N(Ω +∆Ω)− N(Ω)] /∆Ω
∆Ω→0
= dN/dΩ necessitates division by bin width

➜ generally not desirable for finite bins to have the same width

➜ using non-uniform bin sizes ensures statistical relative uncertainty on bin populations
is equally distributed across histogram

➜ failing to divide by the bin measure distorts the distribution away from its physical shape

➜ actual bin populations are better computed using a discrete binning expressed
in terms of finite probabilities rather than densities

➜ awkward workaround: multiply each density by the fill volume

➜ prefer to refer to this not as a histogram but a bar chart, reflecting its typical use
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Profiles

➜ useful class of histogram mixing binned and unbinned variable subspaces

➜ allow characterisation of the unbinned dimensions Υ via their moments as
projected into each partition of the bin-space Θ

➜ allow statistical aggregation of finite samples into “independent variable” bins θ ∈ Θb ,
while characterising the mean dependence of the unbinned dependent variables y on θ

➜ linearity of statistical moments again ensures consistency when merging bins

➜ unbinned space Υ can in general be multidimensional but canonical bin value then
ambiguous

➜ definiteness retained for single-dimensional unbinned space with moments ⟨y⟩ and ⟨y2⟩

➜ profile canonical bin value is the mean ⟨y(Θ)⟩ as a function of binned coordinates

➜ nominal uncertainty given by standard error σ̂ȳ (θ) = σ̂b/
√

Nb
for effective sample count Nb in bin b ⊂ θ
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Variadic templates and parameter packs
➜ Metaprogramming using C++17 takes care of generalisation to arbitrary dimensions:

#include <iostream >
#include <string >
#include <tuple >
#include <vector >

template <typename ... Args >
class MyHisto {
public:

MyHisto(const std::vector <Args >& ... edges)
: _axes(edges ...) { }

size_t dim() const { return sizeof ...( Args); }

template <size_t I>
void printBinning () const {

if constexpr (I < sizeof ...( Args)) {
std::cout << "Axis" << (I+1) << "has";
std::cout << std::get <I>(_axes).size ();
std::cout << "bins." << std::endl;
printBinning <I+1>();

}
}

void print() const {
std::cout << dim() << "D:" << std::endl;
printBinning <0 >();

}

private:
std::tuple <std::vector <Args >...> _axes;

};

const std::vector <double > dedges {1.0, 2.0, 3.0};
const std::vector <std::string > sedges{"A", "B", "C"};
MyHisto h(dedges , sedges );
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Support of YODA2 in Rivet4
➜ Rivet adopted YODA2 starting with its 4.0 series

➜ all reference data shipped with Rivet has been converted to the new types

➜ HepData already supports YODA2 by default: writes out BinnedEstimate objects

➜ TypeRegister: edge combination of double, int and string pre-registered
for 1D and 2D objects, others can be registered on the fly:

➜ RIVET_REGISTER_TYPE(YODA::BinnedHisto<double,int,string,double>)

➜ RIVET_REGISTER_BINNED_SET(double, double, string, int)

➜ routines adjusted to use discrete binning where appropriate

➜ Rivet’s custom BinnedHistogram class got replaced with a HistoGroup class
(a FillableStorage with a “group axis" and a BinnedHisto as bin content)

Histo1DGroupPtr _hist; //< Histo1DGroup = HistoGroup <double ,double >
...
book(_hist , { 1.0, 2.0, 3.0, 4.0 });
for (auto& bin : hist ->bins ()) {

book(bin , 1, 1, bin.index ());
}
...
_hist ->fill(val1 , val2);
...
normalize(_hist); // or: scale(_hist , crossSection ()/ sumOfWeights ());
divByGroupWidth(_hist ); // divide by bin width along group axis
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Better support for massive MPI applications

➜ YODA2 inheritance structure makes it straightforward to serialize the data

➜ numerical content of AnalysisHandler can be translated into std::vector<double>

➜ arrays of primative types lend themselves better to MPI communication

➜ corresponding deserialize method to load the data block
back into an AnalysisHandler for merging

➜ reduced I/O load from parsing info files in the initialisation phase

➜ more profiling and optmisations envisaged for the Rivet4 series
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