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Introduction

• ATLAS experiment at LHC and physics analysis of taken data heavily depend on

simulated event samples produced with full Geant4 detector simulations

• Monte Carlo (MC) simulation based on Geant4 major consumer of computing

resources during 2018 data-taking year

• Anticipated to remain dominating resource users in High-Lumi LHC era

• Performing simulations with Geant4 and Athena (ATLAS Offline software)

• Many proposed and already validated simulation optimizations available for

improving CPU and memory consumption without sacrificing physics accuracy

Topics covered within this talk:

Implemented Optimizations

Performance Studies

Ongoing Tasks
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Implemented Optimizations



Woodcock Tracking for Gammas

• Goal: Tracking optimization technique for

neutral particles (especially photons/gammas)

in highly segmented detectors → simulation

steps in detector volumes limited by geometric

boundaries (not physics)

• Advancements:

• Performs tracking in a unified geometry made

by material with highest macroscopic

cross-section (Pb) related to Z and number of

atoms per unit volume

(physics does not change)

• Interaction then occurs with probability equal

to ratio of CR of true material and Pb

• Implemented as special wrapper process for

gammas in Geant4

• Result:

• Reducing ≈ 50% of steps

in EMEC region

• Overall measured speedup

in Athena: 17.5%
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Static Linking

Reference: HepExMT Benchmark

Results: Speed-up of ≈ 5− 7% depending

on compiler version

• Goal: Use Geant4 as static library to

avoid lookup table delays

• Approach: Define BigSimulation

shared library by grouping all libraries

from Athena packages that use Geant4

• Advantage: States are identical →
No physics validation required for this

task
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https://gitlab.cern.ch/adotti/HepExpMT


EM Range Cuts

• Motivation: Different energy

thresholds in Geant4 (only production

threshold for secondary particles

relevant)

• Approach:

• Secondary production threshold for

ionization (e−) and bremsstrahlung

(γ) at cross-section level

• Setting secondary production cut in

length units: minimum range of

secondary e− and minimum

absorption length of gammas

• Below threshold: energy deposited at

the end of production step
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Reference: ATLAS Geant4 Performance Optimization Plots

• Results: CPU speed-up of ≈ 8% and

significant reduction of simulated

low-energy electrons (≈ 60%)

Reference: Geant4 performance optimization in the ATLAS experiment
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-001/
https://www.researchgate.net/publication/346904524_Geant4_performance_optimization_in_the_ATLAS_experiment


Russian Roulette
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Optimization Plots

• Motivation: Neutrons & photons take majority of CPU

time → Barrel and endcap EM calorimeters most

resource-intensive

• Approach: Photon/Neutron Russian Roulette

(PRR/NRR): randomly discard particles below energy

threshold and weight the energy deposits of remaining

particles accordingly

• Results: NRR performance increased by

10% speed up with 2 MeV threshold for neutrons

Reference: Geant4 performance optimization in the ATLAS experiment
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-001/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/SIM-2019-001/
https://www.researchgate.net/publication/346904524_Geant4_performance_optimization_in_the_ATLAS_experiment


G4GammaGeneralProcesss

• Motivation: Many different gamma processes increase

computation time

• Approach: Use only one collective physics process for

photons → reducing number of instructions/calculations

on geometry boundary crossings

• Results: Improvement about 3% CPU speed-up
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Magnetic Field Optimizations

• Motivation: Tracking particles in

magnetic field use many resources

• Approach: Switching off magnetic

field in LAr region without affecting

shower shape (not used for muons or

high energetic e+/e−

• Results: Speed-up of around 3%

• Further Progress: Possibility to

extend approach to other detector

regions as well
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Geometry Optimizations

• EMEC Custom Solid

• Motivation: Described with

G4Polycone

• Approach:

• Replacing G4Polycone with

G4ShiftedCone – outer wheel divided

into two conical-shaped sections

• Slices new wheel — divided into

many thick slices along Z axis

• Result: Speed-up of 5–6%

• VecGeom Integration

• Approach:

• Optimised implementation of

geometrical shapes → taking

advantage of explicit and implicit

vectorisation

• Only replacement of polycons, cones,

tubes relevant

• Result: Speed-up of 2–7%
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Performance Studies



Computing Fractions

• CPU fraction: CPU time distribution among different subdetectors through

mc20, mc21 and mc23 campaigns

• Largest CPU fraction in EMEC followed by tracker and Barrel EMC

• Tile detector and muons showing smallest impact on performance
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CPU Time

• Time spent per event simulating 100 tt̄ events
(important benchmark channel for simulations):

• for each of the major subdetectors (top)

• for each of the each particle type (bottom)

• Color indicating different configurations:

• Left bar: Run 2 configuration (mc20)

• Middle bar: Previous Run 3 configuratin (mc21)

• Rigth bar: run 3 configuration with latest optimizations

(mc23)

• In total improvement of 50% CPU time reached

compared to Run 2 configuration
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Stepping Plots
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Latest improvements include:

• EM range cuts

• Photon Russian Roulette

• Neutron Russian Roulette

• Geant4 built as a single library

• G4GammaGeneralProcess

• Woodcock tracking in EM

end-cap

• Magnetic field optimization

• Optimized EM end-cap

• Using VecGeom
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Ongoing Tasks



EMEC Geometry Optimization

• Motivation: Current implementation of Endcap EM

Calorimeter (EMEC) with custom solids based on

G4Polycone

• Approach:

• Define geometry of EMEC with Standard G4 shapes

(G4Trap) to speed up simulation as well as allow usage

in other architectur (GPU)

• Additional slices in z-direction result in further

improvements

• Ongoing comparison between different geometry options

and configurations

• Results: Solid improvement in CPU time of ≈ 19%

(physics validation to be done)
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Celeritas/AdePT

• R&D projects aiming to accelerate simulation of electromagnetic showers on GPUs

• Celeritas: Collaboration between several US national labs

(Poster https://indico.jlab.org/event/459/contributions/11818/)

• AdePT: mainly CERN-SFT initiative

• Using VecGeom (vectorized geometry) library to handle complex detector

geometries

• Implementing data structures & workflows for track-parallel stepping on GPUs

• Using G4HepEM (CPU/GPU implementation of Geant4) for EM physics models

• Continuously validating results against Geant4

• Demonstrate significant speedup over Geant4 on CPU with simple geometries
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Advanced Compiler Optimization

• Goal: Speed up simulation with link time and profile-guided optimization

• Advanced compiler optimizations can lead to non-negligible speed-up factors

• CMS report ≈ 10% speed in their software

• Two approaches for reducing application runtime relying on the compiler: smarter

usage of compiler → more throughput → efficient use of computing resources

LTO: Compilation units with metadata

• Consults to optimize when building shared

objects

• Expands scope of inter-procedural

optimizations to encompass all objects

visible at link time

• Preliminary benchmark: 3–4% speed-up

(physics validation planned)

PGO: Optimize full executable

• Build instrumented binaries, producing profile

for application, rebuild from sources and

profile

• Inlining, block ordering, register allocation,

conditional branch optimization, virtual call

speculations, . . .

• Preliminary benchmark: 3–5% speed-up

(physics validation done but following up) 15



ISF Particle Killer

• Goal: Kill primary particles generating secondaries
close to the beam pipe at 5 – 6 m

• Huge number of secondaries being produced 5–6m

away from IP with small r (close to beam pipe)

• Many of these secondaries will not cause any

energy deposits in the calorimeters or a muon hit

• Primary particles causing interactions could be

dropped directly

• Approach:

1. Generate a large sample of single particles with

4.5 < |η| < 6 with different energies

2. Map out η and E combinations with relevant

signals

3. Drop others directly with new particle killer
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Voxel Density Optimization

• Goal: Find optimal values of

voxel density for optimization

of CPU time and memory

consumption

• Advancements:

• Size/Granularity of the

voxels can be tuned

• Voxel density - member

variable in Geant4 logical

volume class

• Improvement in memory

consumption for geometry

optimizations
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• Results:

• Small improvement in CPU time and

memory consumption seems possible

• Physics validation completed

• Follow-up study is ongoing

(increase of CPU observed)
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Conclusion & Outlook

Conclusion:

• Significant optimizations implemented in ATLAS Geant4 simulation improved

CPU time and memory efficiency without sacrificing physics accuracy

• Total reduction of > 50% possible compare to run 2 samples

• Key advancements include Woodcock tracking, EM range cuts, optimized

geometry, and new gamma processes

• Excellent collaboration with Geant4 team for implementing optimizations

Outlook:

• Ongoing improvements focus on leveraging modern computing architectures

• Innovative approaches continue to refine simulation precision and resource usage

• Continuous validation against Geant4 ensures high standards of physics accuracy
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Thank you very much
for your attention!
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In-Field Parameter Tuning

• Motivation: Previous tuning performed by CMS (full simulation for Run 3)

• Goal: Find the optimal values of the in-field tracking parameters for physics

performance and CPU savings

• Approach:
• Lists of tuning parameters + descriptions for tracking in a magnetic field

• DeltaIntersection: accuracy of intersection with boundary volume

• DeltaOneStep: accuracy for endpoint of ’ordinary’ integration step

• DeltaChord: approximation of curve with linear sections

• MaxStep: maximum step length

• Cross-correlation between different parameters → global optimization required

• Tuning to be done for different detector regions and various particle energies

• Current Progress: Implementation in simplified framework FullSimLight

completed → next step testing influence in full ATLAS simulations with Athena
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Energy Loss Fluctuation Studies

• Goal: Evaluate performance gain from disabling energy loss fluctuation in Geant4

simulations

• Study Focus:

• Determine the computational benefits of switching off the energy loss fluctuation

feature in Geant4

• Assess potential impacts on physics accuracy

• Approach:

• Use dedicated Geant4 command to disable energy loss fluctuations

• Initial tests to be conducted in FullSimLight followed by full ATLAS simulations in

Athena

• Current Progress: Performance gains are being investigated with physics

validation to follow for assessing impact
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