

Optimizing the ATLAS Geant4 Detector Simulation

Advanced Computing and Analysis Techniques in Physics Research ACAT 2024

Mustafa Schmidt on behalf of the ATLAS collaboration March 13, 2024

University of Wuppertal

Introduction

- ATLAS experiment at LHC and physics analysis of taken data heavily depend on simulated event samples produced with full Geant4 detector simulations
- Monte Carlo (MC) simulation based on Geant4 major consumer of computing resources during 2018 data-taking year
- Anticipated to remain dominating resource users in High-Lumi LHC era
- Performing simulations with Geant4 and Athena (ATLAS Offline software)
- Many proposed and already validated simulation optimizations available for improving CPU and memory consumption without sacrificing physics accuracy

Topics covered within this talk:

Implemented Optimizations Performance Studies Ongoing Tasks

Implemented Optimizations

Woodcock Tracking for Gammas

- Goal: Tracking optimization technique for neutral particles (especially photons/gammas) in highly segmented detectors → simulation steps in detector volumes limited by geometric boundaries (not physics)
- Advancements:
 - Performs tracking in a unified geometry made by material with highest macroscopic cross-section (Pb) related to Z and number of atoms per unit volume (physics does not change)
 - Interaction then occurs with probability equal to ratio of CR of true material and Pb
 - Implemented as special wrapper process for gammas in Geant4

- Result:
 - Reducing $\approx 50\%$ of steps in EMEC region
 - Overall measured speedup in Athena: 17.5%

Reference: HepExMT Benchmark

Results: Speed-up of $\approx 5 - 7\%$ depending on compiler version

- **Goal:** Use Geant4 as static library to avoid lookup table delays
- **Approach:** Define BigSimulation shared library by grouping all libraries from Athena packages that use Geant4
- Advantage: States are identical \rightarrow No physics validation required for this task

EM Range Cuts

- Motivation: Different energy thresholds in Geant4 (only production threshold for secondary particles relevant)
- Approach:
 - Secondary production threshold for ionization (e⁻) and bremsstrahlung (γ) at cross-section level
 - Setting secondary production cut in length units: minimum range of secondary e⁻ and minimum absorption length of gammas
 - Below threshold: energy deposited at the end of production step

Reference: ATLAS Geant4 Performance Optimization Plots

 Results: CPU speed-up of ≈ 8% and significant reduction of simulated low-energy electrons (≈ 60%)

Reference: Geant4 performance optimization in the ATLAS experiment

Russian Roulette

Reference: ATLAS Geant4 Performance

- Motivation: Neutrons & photons take majority of CPU time → Barrel and endcap EM calorimeters most resource-intensive
- **Approach:** Photon/Neutron Russian Roulette (PRR/NRR): randomly discard particles below energy threshold and weight the energy deposits of remaining particles accordingly
- **Results:** NRR performance increased by 10% speed up with 2 MeV threshold for neutrons

Reference: Geant4 performance optimization in the ATLAS experiment

- Motivation: Many different gamma processes increase computation time
- Approach: Use only one collective physics process for photons → reducing number of instructions/calculations on geometry boundary crossings
- Results: Improvement about 3% CPU speed-up

Magnetic Field Optimizations

- Motivation: Tracking particles in magnetic field use many resources
- Approach: Switching off magnetic field in LAr region without affecting shower shape (not used for muons or high energetic e^+/e^-
- Results: Speed-up of around 3%
- Further Progress: Possibility to extend approach to other detector regions as well

Geometry Optimizations

- EMEC Custom Solid
- Motivation: Described with G4Polycone
- Approach:
 - Replacing G4Polycone with G4ShiftedCone – outer wheel divided into two conical-shaped sections
 - Slices new wheel divided into many thick slices along Z axis
- Result: Speed-up of 5-6%

- VecGeom Integration
- Approach:
 - Optimised implementation of geometrical shapes → taking advantage of explicit and implicit vectorisation
 - Only replacement of polycons, cones, tubes relevant
- Result: Speed-up of 2–7%

Performance Studies

Computing Fractions

- **CPU fraction:** CPU time distribution among different subdetectors through mc20, mc21 and mc23 campaigns
- Largest CPU fraction in EMEC followed by tracker and Barrel EMC
- Tile detector and muons showing smallest impact on performance

CPU Time

- Time spent per event simulating 100 *t* \bar{t} events (important benchmark channel for simulations):
 - for each of the major subdetectors (top)
 - for each of the each particle type (bottom)
- Color indicating different configurations:
 - Left bar: Run 2 configuration (mc20)
 - Middle bar: Previous Run 3 configuratin (mc21)
 - Rigth bar: run 3 configuration with latest optimizations (mc23)
- In total improvement of 50% CPU time reached compared to Run 2 configuration

Stepping Plots

Latest improvements include:

- EM range cuts
- Photon Russian Roulette
- Neutron Russian Roulette
- Geant4 built as a single library
- G4GammaGeneralProcess
- Woodcock tracking in EM end-cap
- Magnetic field optimization
- Optimized EM end-cap
- Using VecGeom

Ongoing Tasks

EMEC Geometry Optimization

- Motivation: Current implementation of Endcap EM Calorimeter (EMEC) with custom solids based on G4Polycone
- Approach:
 - Define geometry of EMEC with Standard G4 shapes (G4Trap) to speed up simulation as well as allow usage in other architectur (GPU)
 - Additional slices in *z*-direction result in further improvements
 - Ongoing comparison between different geometry options and configurations
- Results: Solid improvement in CPU time of $\approx 19\%$ (physics validation to be done)

Celeritas/AdePT

- R&D projects aiming to accelerate simulation of electromagnetic showers on GPUs
- Celeritas: Collaboration between several US national labs (Poster https://indico.jlab.org/event/459/contributions/11818/)
- AdePT: mainly CERN-SFT initiative
- Using VecGeom (vectorized geometry) library to handle complex detector geometries
- Implementing data structures & workflows for track-parallel stepping on GPUs
- Using G4HepEM (CPU/GPU implementation of Geant4) for EM physics models
- Continuously validating results against Geant4
- Demonstrate significant speedup over Geant4 on CPU with simple geometries

Advanced Compiler Optimization

- Goal: Speed up simulation with link time and profile-guided optimization
- Advanced compiler optimizations can lead to non-negligible speed-up factors
- CMS report pprox 10% speed in their software
- Two approaches for reducing application runtime relying on the compiler: smarter usage of compiler → more throughput → efficient use of computing resources

LTO: Compilation units with metadata

- Consults to optimize when building shared objects
- Expands scope of inter-procedural optimizations to encompass all objects visible at link time
- Preliminary benchmark: 3–4% speed-up (physics validation planned)

PGO: Optimize full executable

- Build instrumented binaries, producing profile for application, rebuild from sources and profile
- Inlining, block ordering, register allocation, conditional branch optimization, virtual call speculations, ...
- Preliminary benchmark: 3–5% speed-up (physics validation done but following up)

ISF Particle Killer

- Goal: Kill primary particles generating secondaries close to the beam pipe at 5 6 m
 - Huge number of secondaries being produced 5–6 m away from IP with small *r* (close to beam pipe)
 - Many of these secondaries will not cause any energy deposits in the calorimeters or a muon hit
 - Primary particles causing interactions could be dropped directly
- Approach:
 - 1. Generate a large sample of single particles with $4.5 < |\eta| < 6 \mbox{ with different energies}$
 - 2. Map out η and E combinations with relevant signals
 - 3. Drop others directly with new particle killer

Voxel Density Optimization

- Goal: Find optimal values of voxel density for optimization of CPU time and memory consumption
- Advancements:
 - Size/Granularity of the voxels can be tuned
 - Voxel density member variable in Geant4 logical volume class
 - Improvement in memory consumption for geometry optimizations

• Results:

- Small improvement in CPU time and memory consumption seems possible
- Physics validation completed
- Follow-up study is ongoing (increase of CPU observed)

Conclusion:

- Significant optimizations implemented in ATLAS Geant4 simulation improved CPU time and memory efficiency without sacrificing physics accuracy
- Total reduction of > 50% possible compare to run 2 samples
- Key advancements include Woodcock tracking, EM range cuts, optimized geometry, and new gamma processes
- Excellent collaboration with Geant4 team for implementing optimizations

Outlook:

- Ongoing improvements focus on leveraging modern computing architectures
- Innovative approaches continue to refine simulation precision and resource usage
- Continuous validation against Geant4 ensures high standards of physics accuracy

Thank you very much for your attention!

Backup Slides

In-Field Parameter Tuning

- Motivation: Previous tuning performed by CMS (full simulation for Run 3)
- **Goal:** Find the optimal values of the in-field tracking parameters for physics performance and CPU savings
- Approach:
 - Lists of tuning parameters + descriptions for tracking in a magnetic field
 - DeltaIntersection: accuracy of intersection with boundary volume
 - DeltaOneStep: accuracy for endpoint of 'ordinary' integration step
 - DeltaChord: approximation of curve with linear sections
 - MaxStep: maximum step length
 - Cross-correlation between different parameters \rightarrow global optimization required
 - Tuning to be done for different detector regions and various particle energies
- Current Progress: Implementation in simplified framework FullSimLight completed → next step testing influence in full ATLAS simulations with Athena

Energy Loss Fluctuation Studies

- **Goal:** Evaluate performance gain from disabling energy loss fluctuation in Geant4 simulations
- Study Focus:
 - Determine the computational benefits of switching off the energy loss fluctuation feature in Geant4
 - Assess potential impacts on physics accuracy
- Approach:
 - Use dedicated Geant4 command to disable energy loss fluctuations
 - Initial tests to be conducted in FullSimLight followed by full ATLAS simulations in Athena
- **Current Progress:** Performance gains are being investigated with physics validation to follow for assessing impact