The MadNIS Reloaded

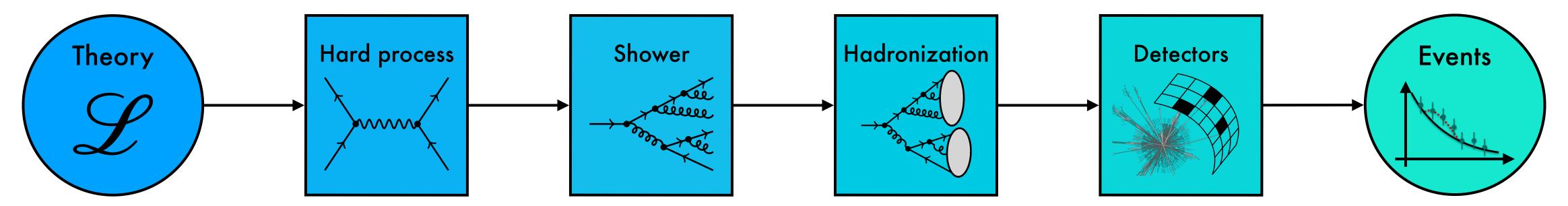
Theo Heimel March 2024

Institut für theoretische Physik Universität Heidelberg

[2311.01548] TH, Huetsch, Maltoni, Mattelaer, Plehn, Winterhalder

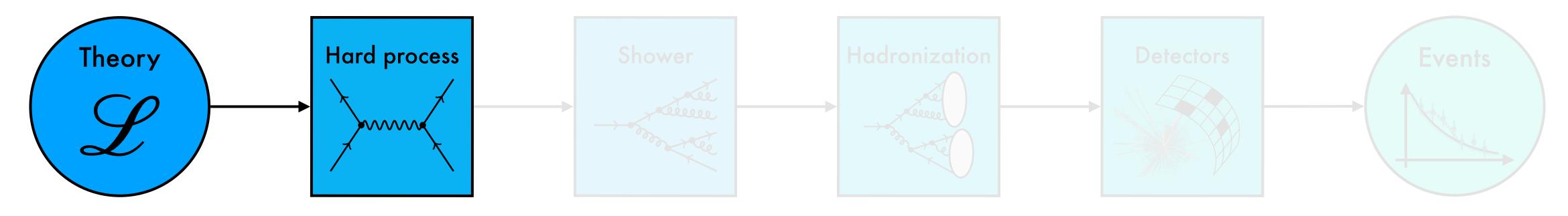
Introduction

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?



Introduction

How can we prevent MC event generation from becoming a bottleneck in future LHC runs?



Differential cross section known from QFT: $d\sigma \sim pdf(x) \cdot |\mathcal{M}(x)|^2 \cdot d\Phi$

Total cross section:

$$\sigma = \int_{\Phi} d\sigma$$

Monte Carlo integration and sampling from differential cross section

accelerate with deep generative models

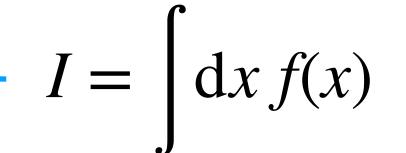
Exact sampling ensured by known likelihood

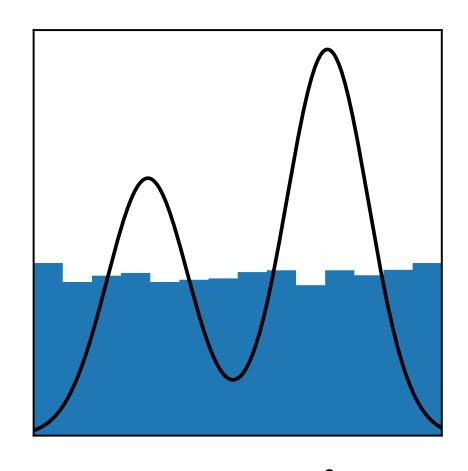
1

better model -

faster sampling

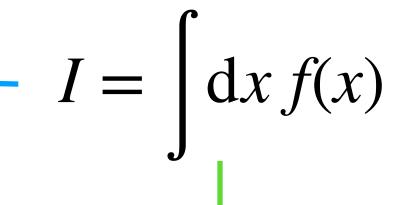
$$I = \int \mathrm{d}x \, f(x)$$

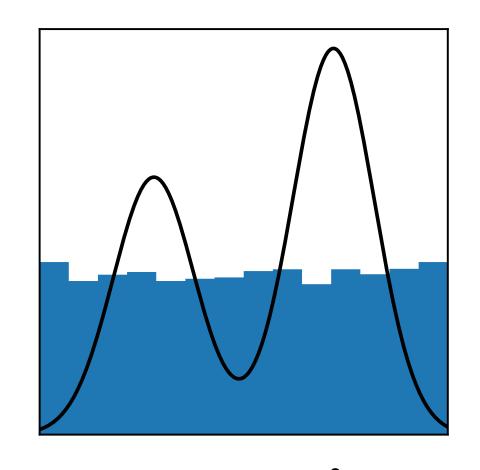




Flat sampling inefficient

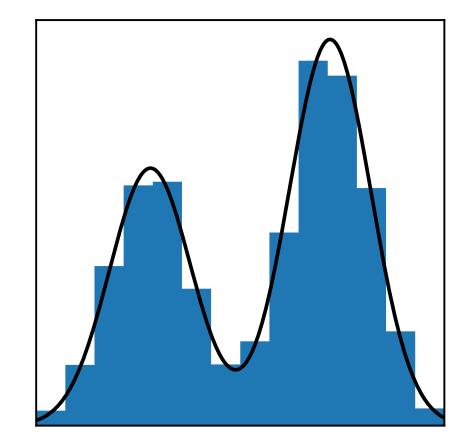
$$I = \langle f(x) \rangle_{x \sim p(x)}$$





Flat sampling inefficient

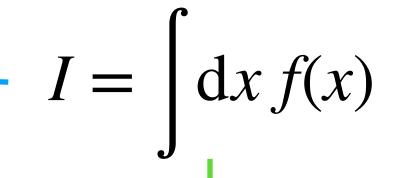
$$I = \langle f(x) \rangle_{x \sim p(x)}$$

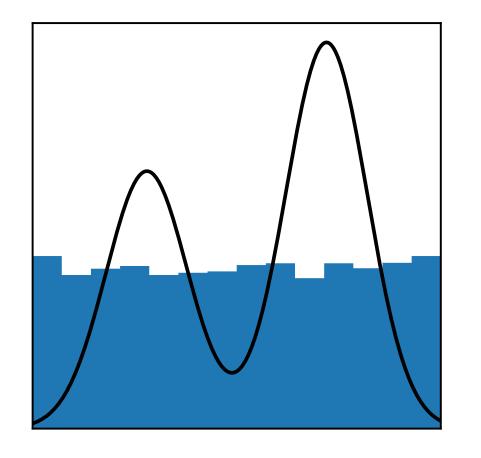


Importance sampling
Find mapping close

to integrand

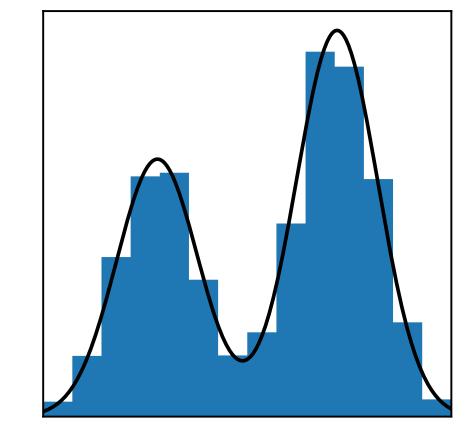
$$I = \left\langle \frac{f(x)}{g(x)} \right\rangle_{x \sim g(x)}$$





Flat sampling inefficient

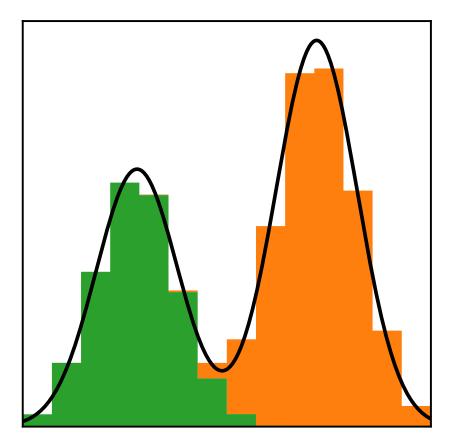
$$I = \langle f(x) \rangle_{x \sim p(x)}$$



Importance sampling

Find mapping close to integrand

$$I = \left\langle \frac{f(x)}{g(x)} \right\rangle_{x \sim g(x)}$$



Multi-channeling one mapping for

each channel

$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}}$$

PS Integration in Madgraph

How can we make event generation faster?

Efficient integration and sampling from differential cross section

$$d\sigma = \frac{1}{\text{flux}} dx_a dx_b f(x_a) f(x_b) d\Phi_n \langle |M_{\lambda,c,...}(p_a, p_b | p_1, ..., p_n)|^2 \rangle$$

Sum over channels

MadGraph: build channels from Feynman diagrams

Channel weights

 $\text{MadGraph: } \alpha_i \sim |M_i|^2$ or $\alpha_i \sim \prod |p_k^2 - m_k^2 - \mathrm{i} M_k \Gamma_k|^{-2}$

Integrand

MadGraph: $d\sigma/dx$

Channel mappings

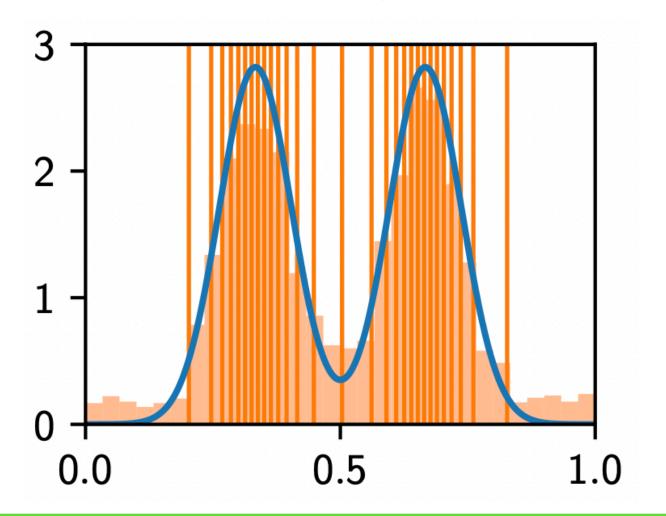
MadGraph: use propagators, ...

VEGAS algorithm

Factorize probability

$$p(x) = p(x_1) \cdots p(x_n)$$

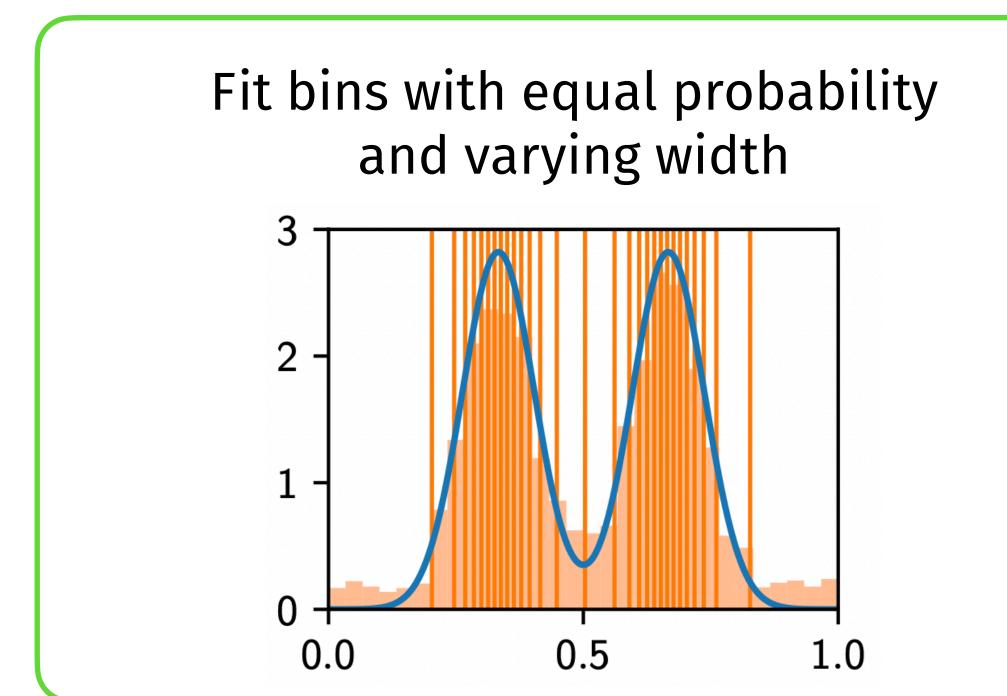
Fit bins with equal probability and varying width



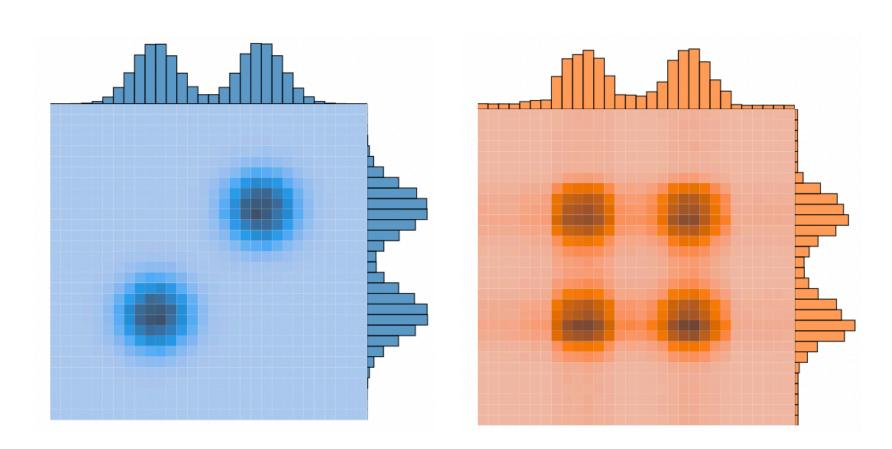
VEGAS algorithm

Factorize probability

$$p(x) = p(x_1) \cdots p(x_n)$$



- Computationally cheap
- → High-dim and rich peaking functions→ slow convergence
- → Peaks not aligned with grid axes→ phantom peaks



MadNIS: Neural Importance Sampling

$$I = \sum_{i} \left\langle \alpha_{i}(x) \frac{f(x)}{g_{i}(x)} \right\rangle_{x \sim g_{i}(x)}$$

Use physics knowledge to construct channels and mappings

Normalizing Flow to refine channel mappings

Fully connected network to refine channel weights

Optimize simultaneously with integral variance as loss function

Overview

Basic functionality

Neural Channel Weights

MadGraph

matrix

elements

Normalizing Flow

MadEvent channel mappings

Improved Multichanneling

Stratified sampling/training

Symmetries between channels

Removing channels

Partial weight buffering

Improved training

VEGAS initialization

Buffered training

Surrogate integrand

Overview

Basic functionality

Neural Channel Weights

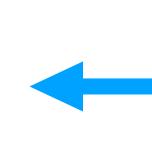
MadGraph

matrix

elements

Normalizing Flow

MadEvent channel mappings



Improved Multichanneling

Stratified sampling/training

Symmetries between channels

Removing channels

Partial weight buffering

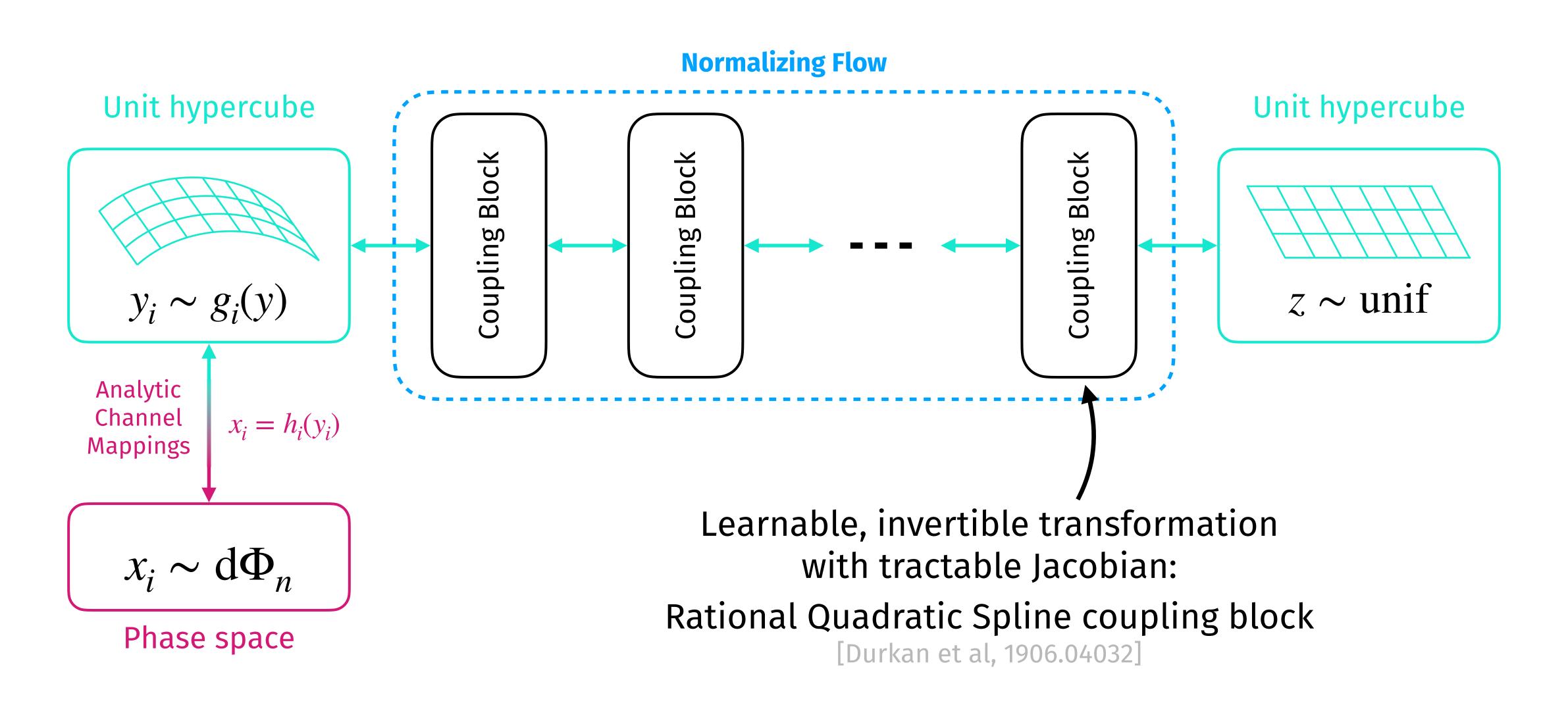
Improved training

VEGAS initialization

Buffered training

Surrogate integrand

Neural Importance Sampling

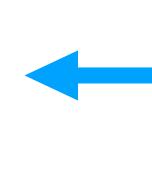


Overview

Basic functionality

Neural Channel Weights

Normalizing Flow



- (MadNIS)

Improved Multichanneling

Stratified sampling/training

Symmetries between channels

MadGraph matrix elements MadEvent channel mappings

Removing channels

Partial weight buffering

Improved training

VEGAS initialization

Buffered training

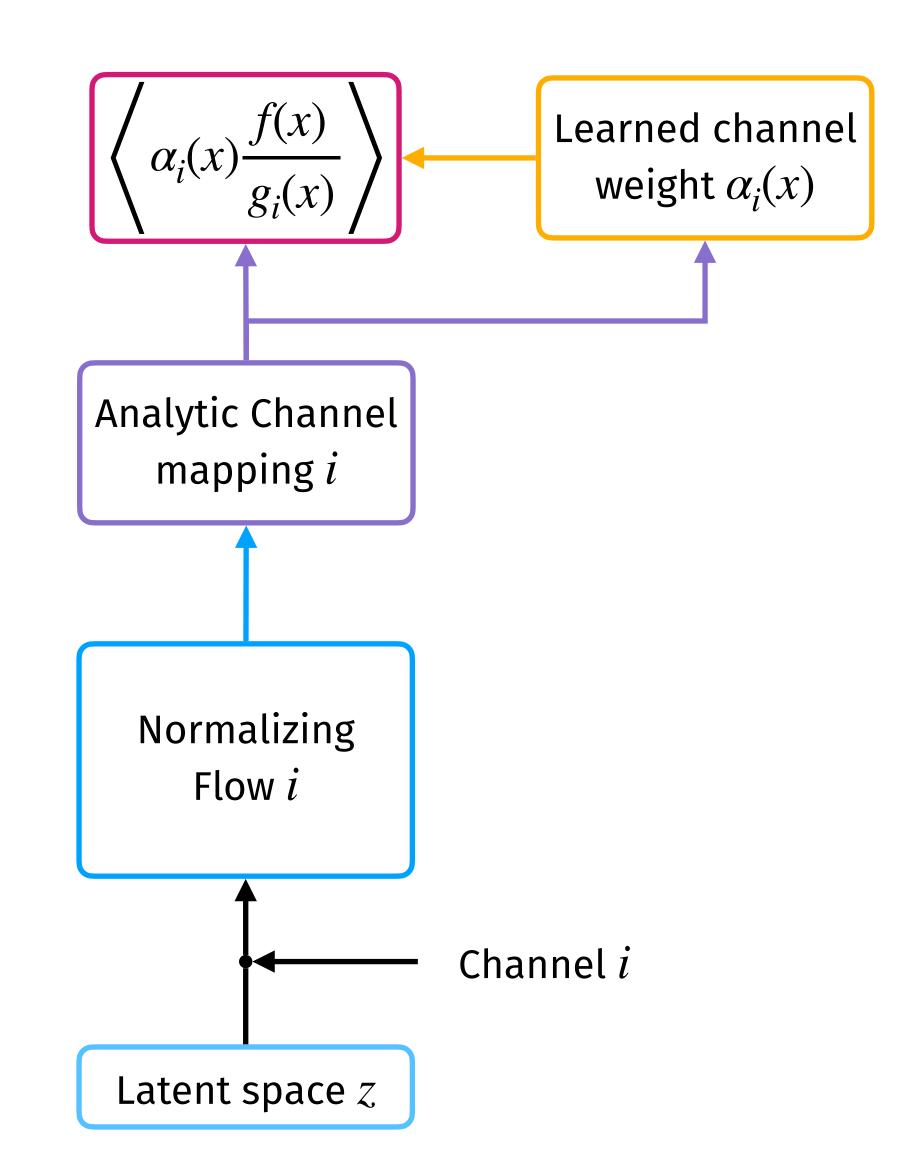
Surrogate integrand

MadNIS: Neural Importance Sampling

Phase space $\Phi \subseteq \mathbb{R}^N$

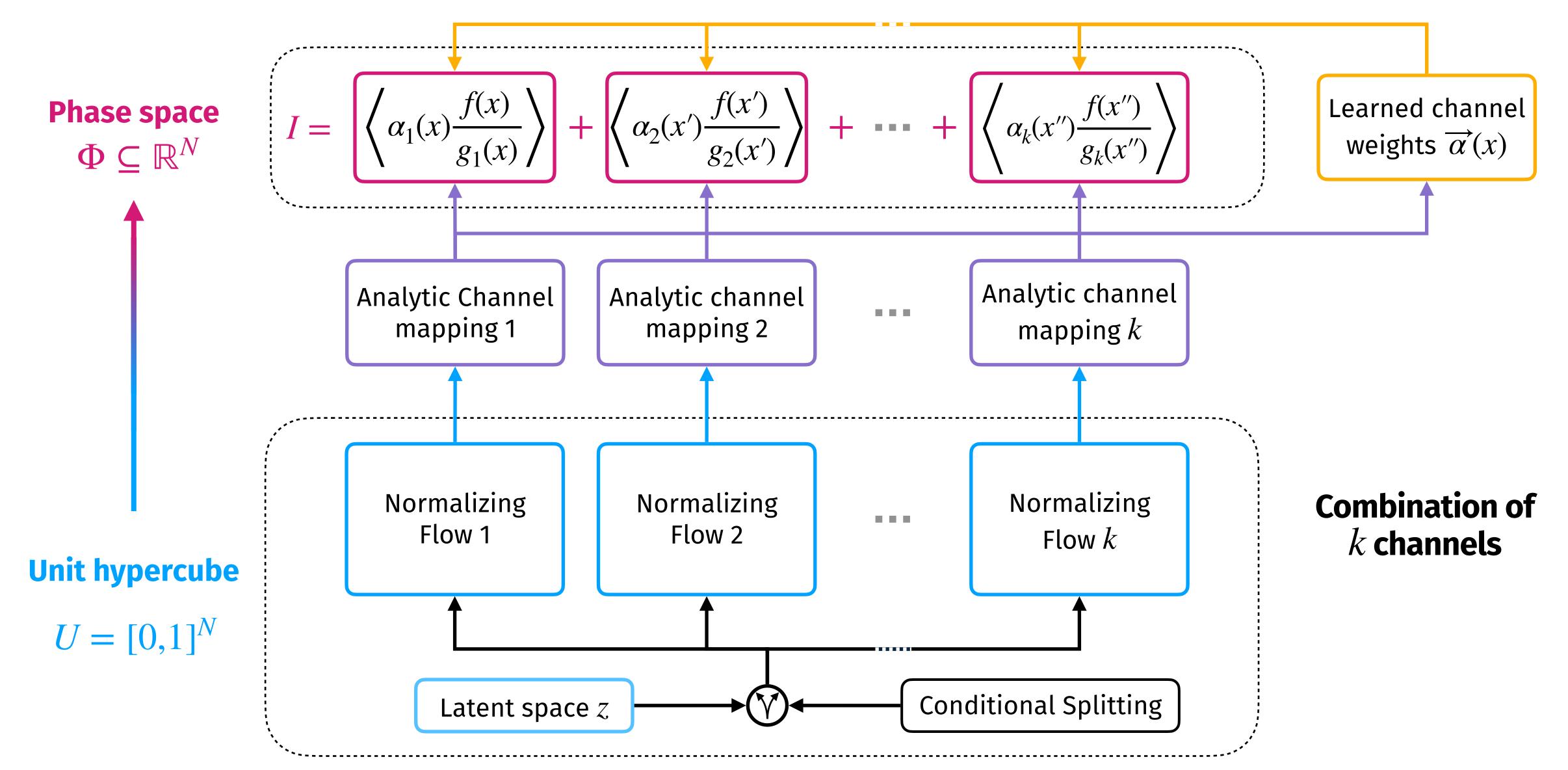
Unit hypercube

$$U = [0,1]^N$$

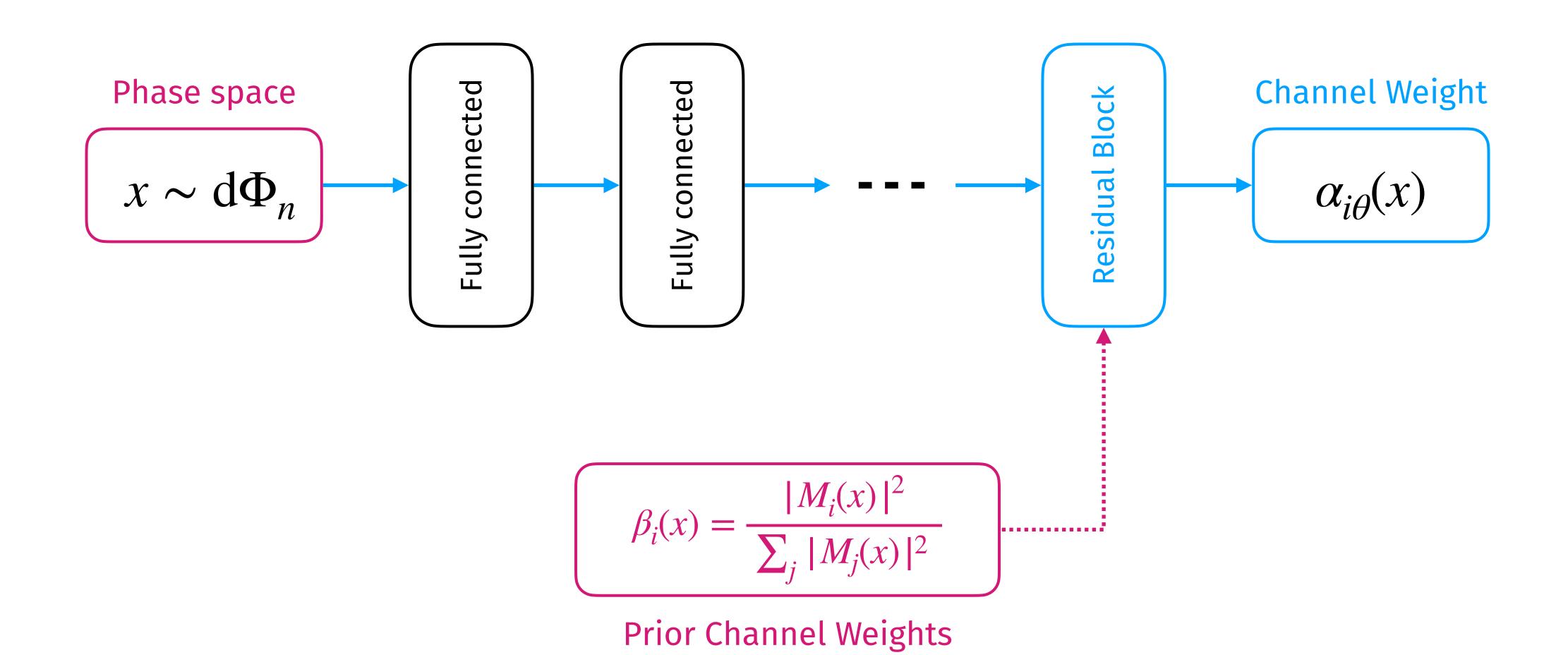


Single channel i

MADNIS: Neural Importance Sampling



Neural Channel Weights



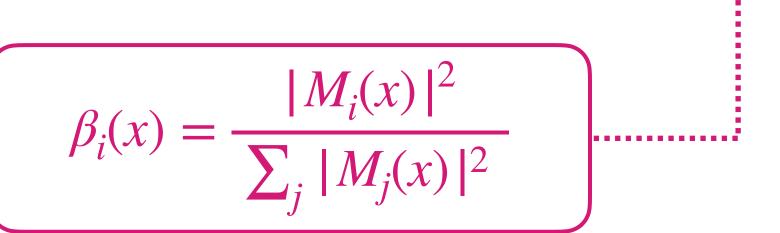
Neural Channel Weights

Add prior

$$\alpha_{i\theta} = \beta_i(x) \exp \Delta_{i\theta}(x)$$

Normalization

$$\alpha_{i\theta}(x) \to \hat{\alpha}_{i\theta}(x) = \frac{\beta_i(x) \exp \Delta_{i\theta}(x)}{\sum_j \beta_j(x) \exp \Delta_{i\theta}(x)}$$



Prior Channel Weights

Channel Weight

 $\alpha_{i\theta}(x)$

Residual Block

Loss function

Training objective:
Minimize total variance

$$\sigma_{\mathrm{tot}}^2 = N \sum_{i} \frac{\sigma_i^2}{N_i}$$
 with

$$\sigma_i^2 = \text{Var}\left(\alpha_i(x) \frac{f(x)}{g_i(x)}\right)_{x \sim g_i(x)}$$

Optimal MC weights depend on N_i

assume choice of N_i during training: use stratified sampling

$$N_i = N \frac{\sigma_i}{\sum_k \sigma_k}$$

$$\mathcal{L} = \sigma_{\text{tot}}^2 = \sum_{i,k} \sigma_i \, \sigma_k$$

Overview

Basic functionality

Neural Channel Weights

MadGraph

matrix

elements

Normalizing Flow

MadEvent channel mappings

Improved Multichanneling

Stratified sampling/training

Symmetries between channels

Removing channels

Partial weight buffering

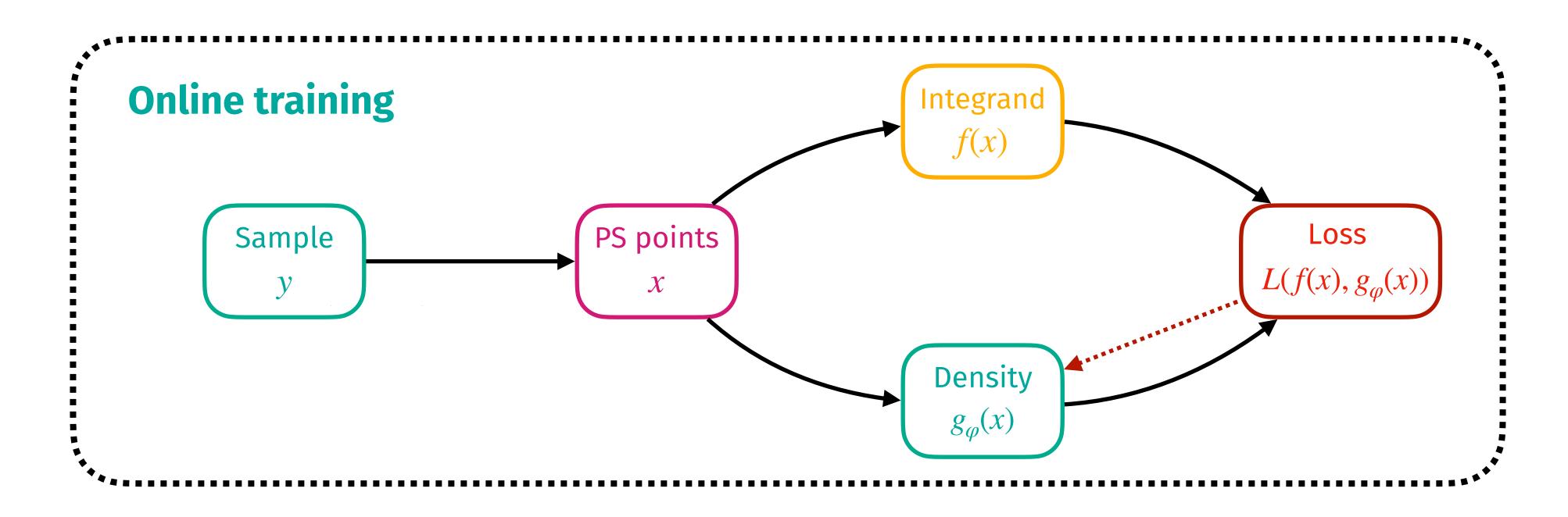
Improved training

VEGAS initialization

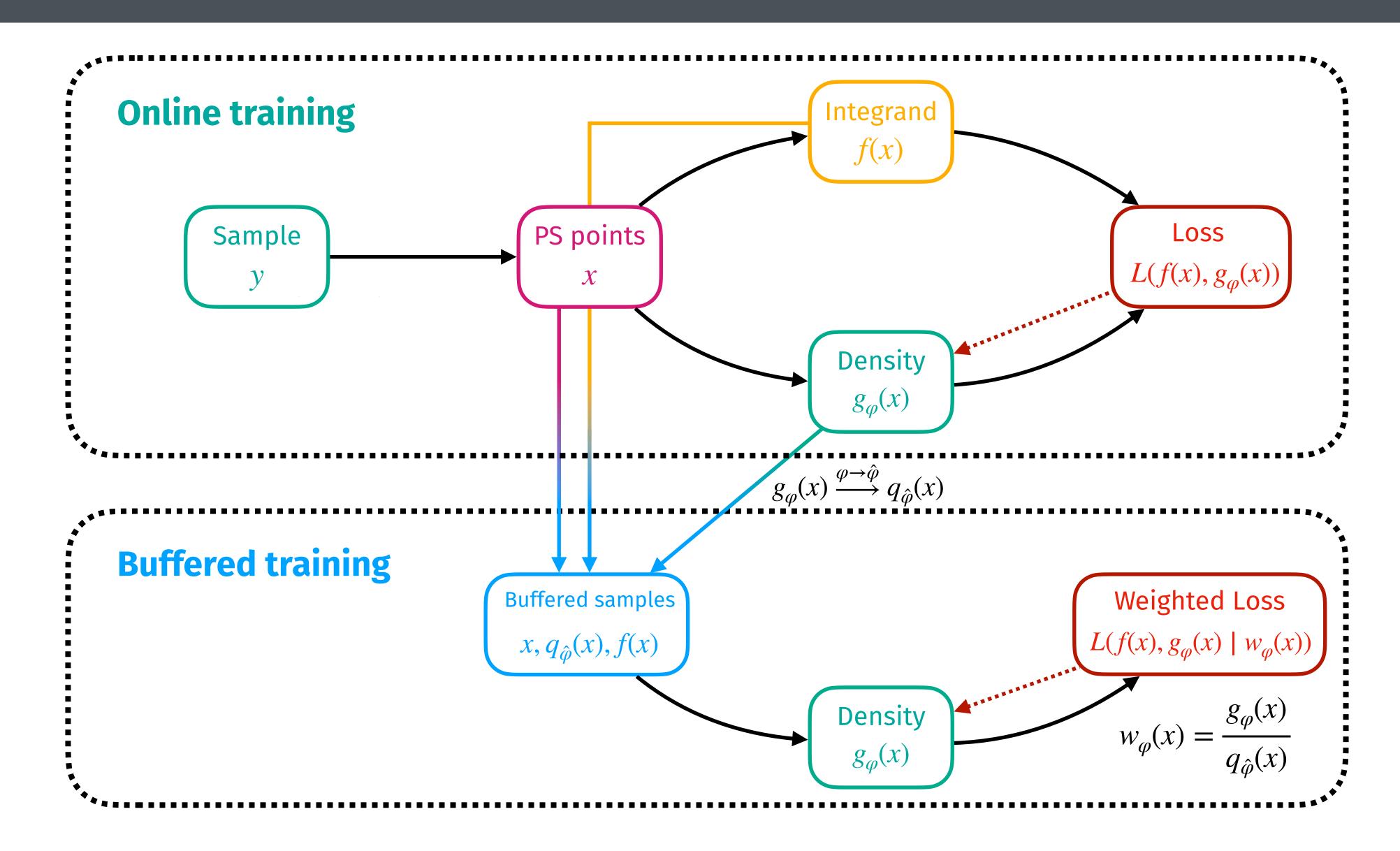
Buffered training

Surrogate integrand

Buffered Training



Buffered Training



Buffered Training

Training algorithm

generate new samples, train on them, save samples

₩

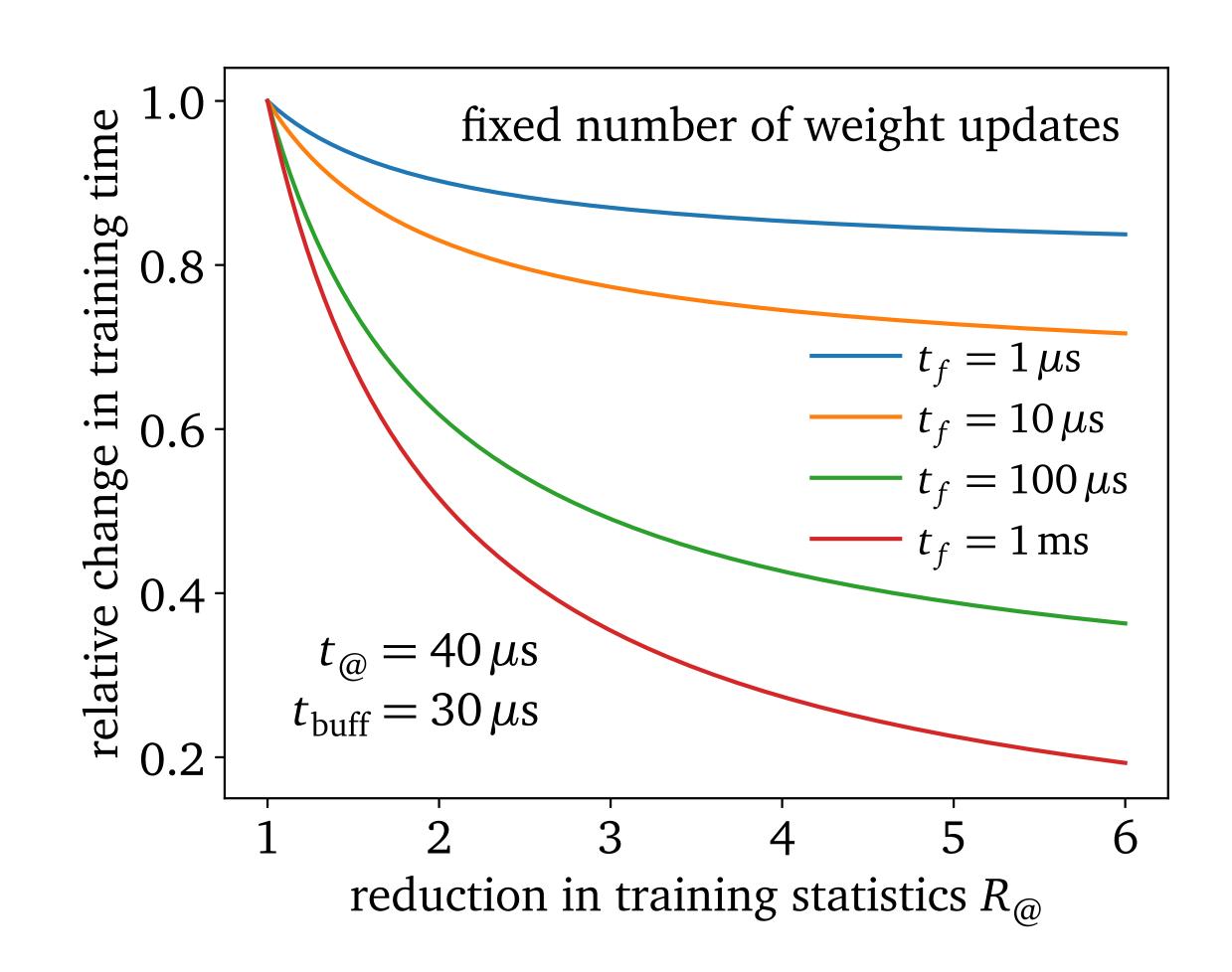
train on saved samples *n* times

↓ nea

repeat

Reduction in training statistics by

$$R_{@} = n + 1$$



Overview

Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements

MadEvent channel mappings

Improved Multichanneling

Stratified sampling/ training

Symmetries between channels

Removing channels

Partial weight buffering

Improved training

VEGAS initialization Buffered training

Surrogate integrand

VEGAS Initialization

:		:
	VEGAS	Flow
Training	Fast	Slow
Correlations	No	Yes

Combine advantages:

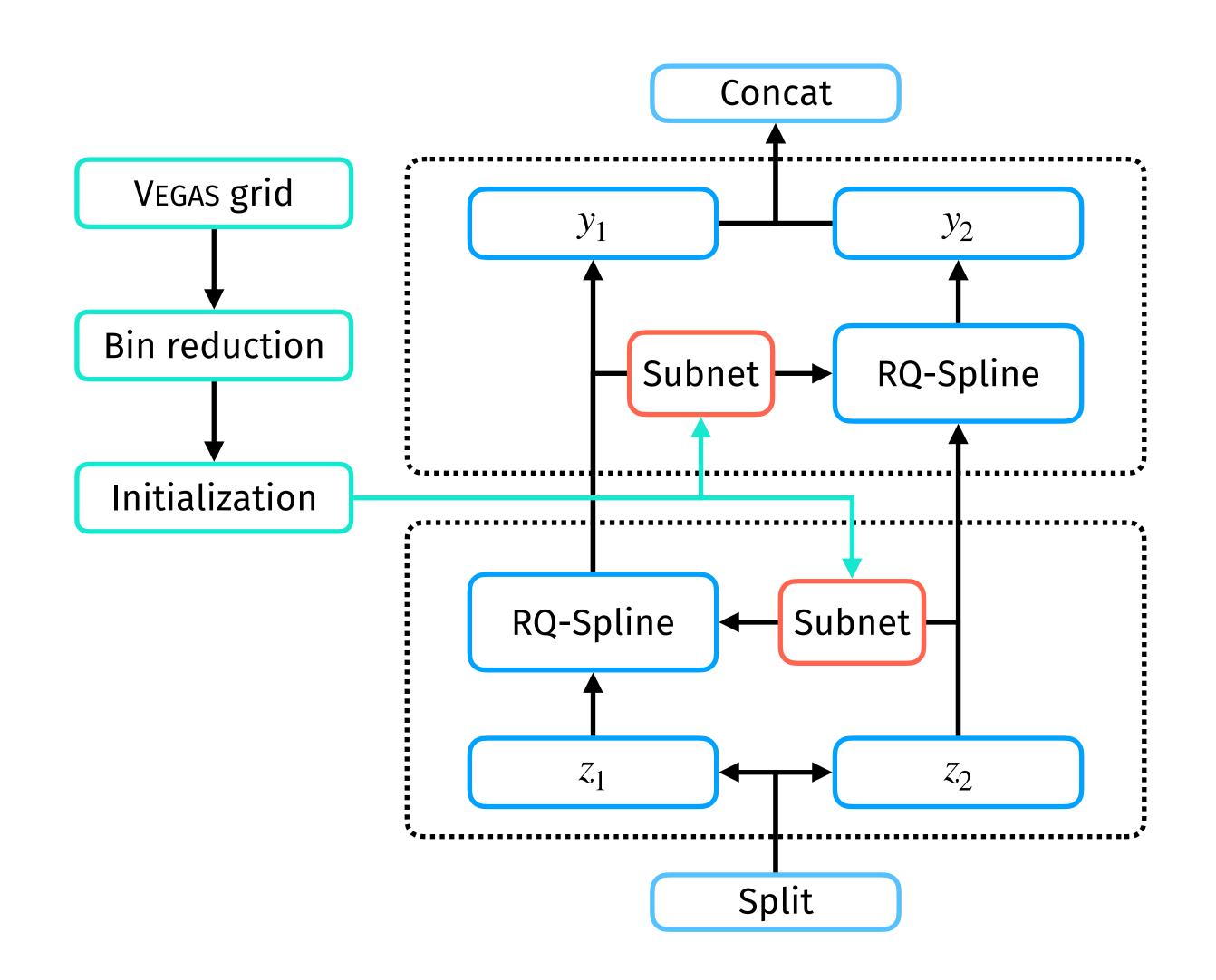
Pre-trained VEGAS grid as starting point for flow training

VEGAS Initialization



Combine advantages:

Pre-trained VEGAS grid as starting point for flow training



Overview

Basic functionality

Neural Channel Weights

Normalizing Flow

MadGraph matrix elements

MadEvent channel mappings

Improved Multichanneling

Stratified sampling/training

Symmetries between channels

Removing channels

Partial weight buffering

Improved training

VEGAS initialization

Buffered training

Surrogate integrand

Improved Multichanneling

Use symmetries

Groups of channels only differ by permutations of final state momenta

 \downarrow

use **common flows** and combine in loss function

Stratified training

Channels have different contributions to the total variance

more samples for channels with higher variance during training

Channel dropping

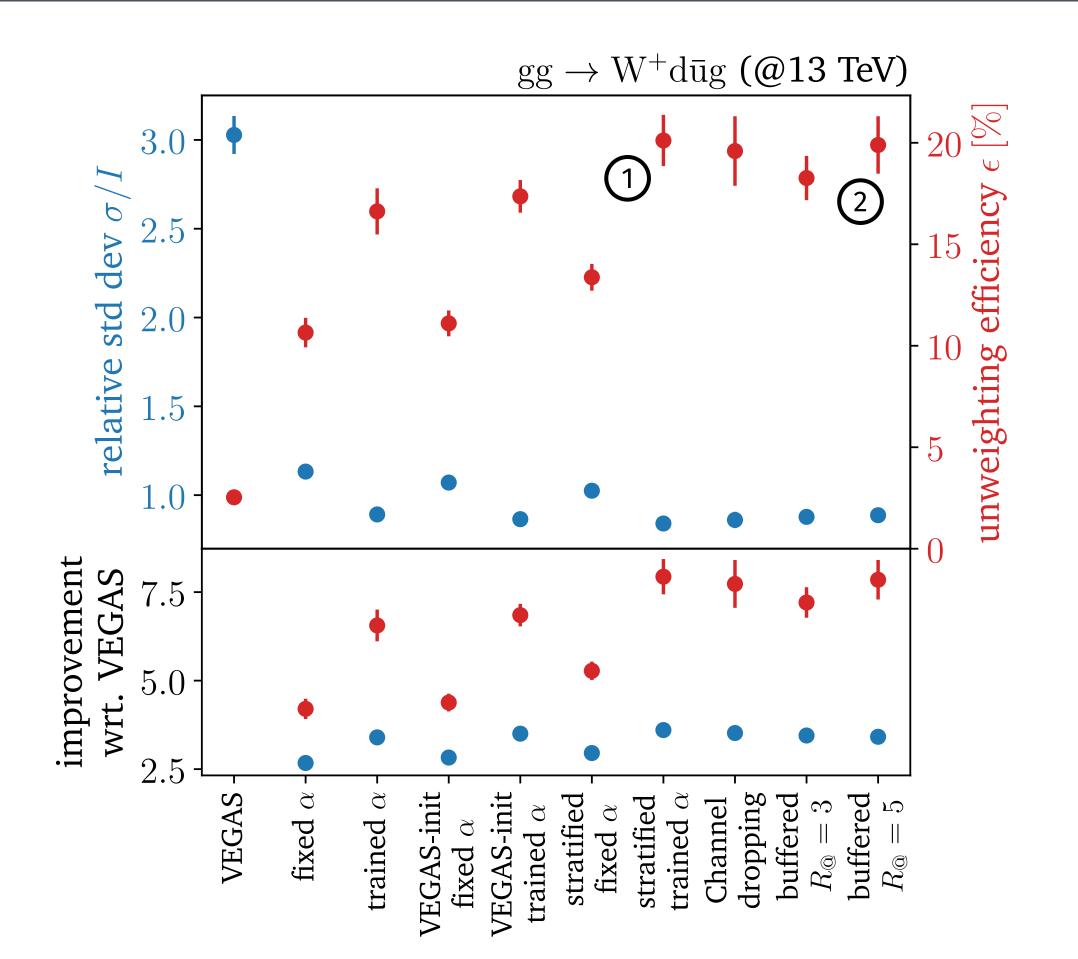
MadNIS often reduces
contribution of some
channels to total integral

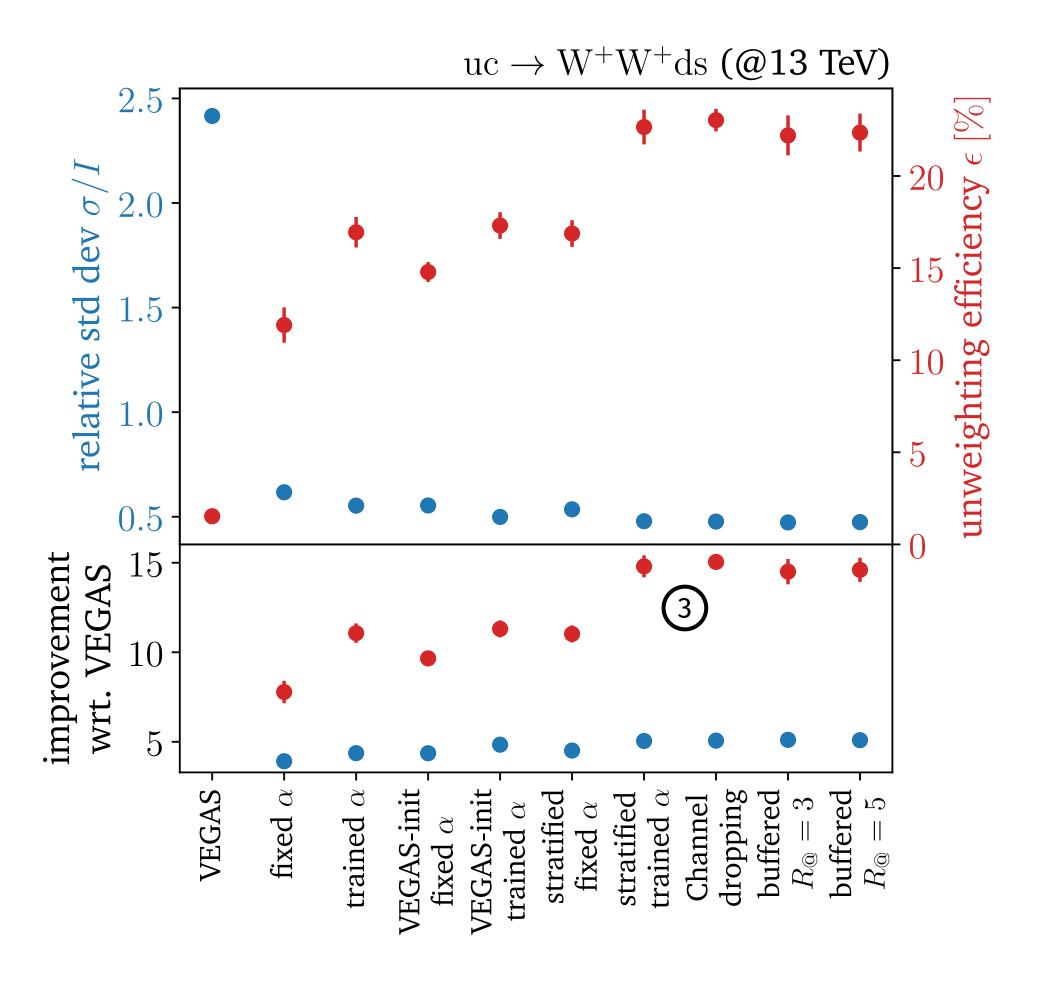
remove insignificant channels from the

training completely

Reduced complexity Improved stability

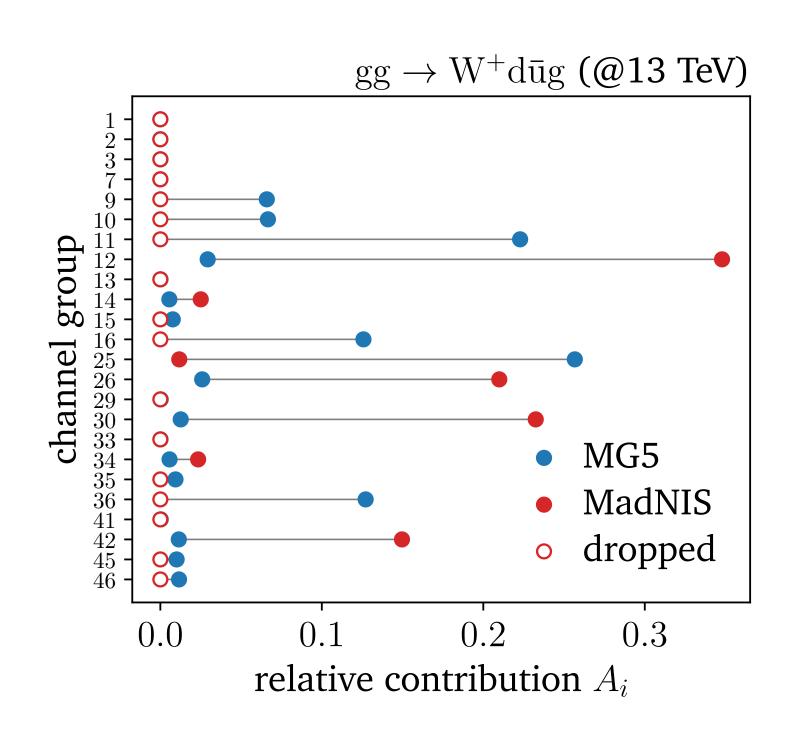
LHC processes

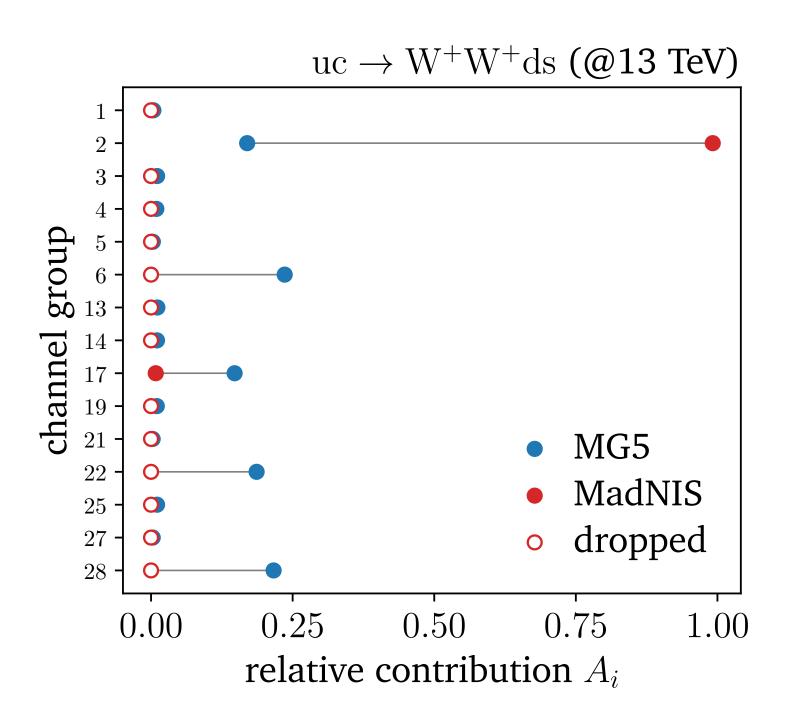




- 1. Excellent results by combining all improvements!
 - 2. Same performance with buffered training
- 3. Even larger improvements for process with large interference terms

Learned channel weights



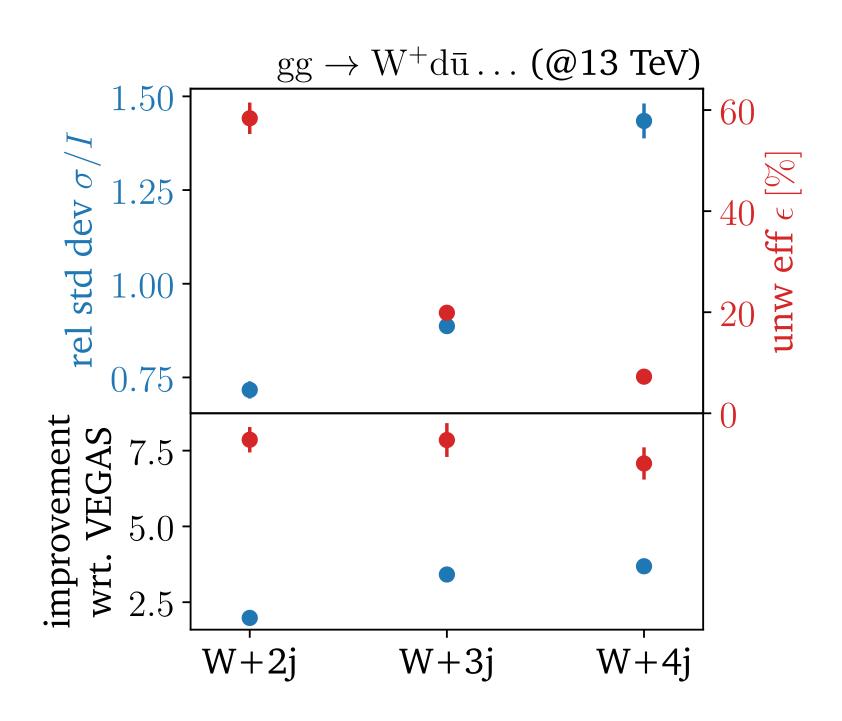


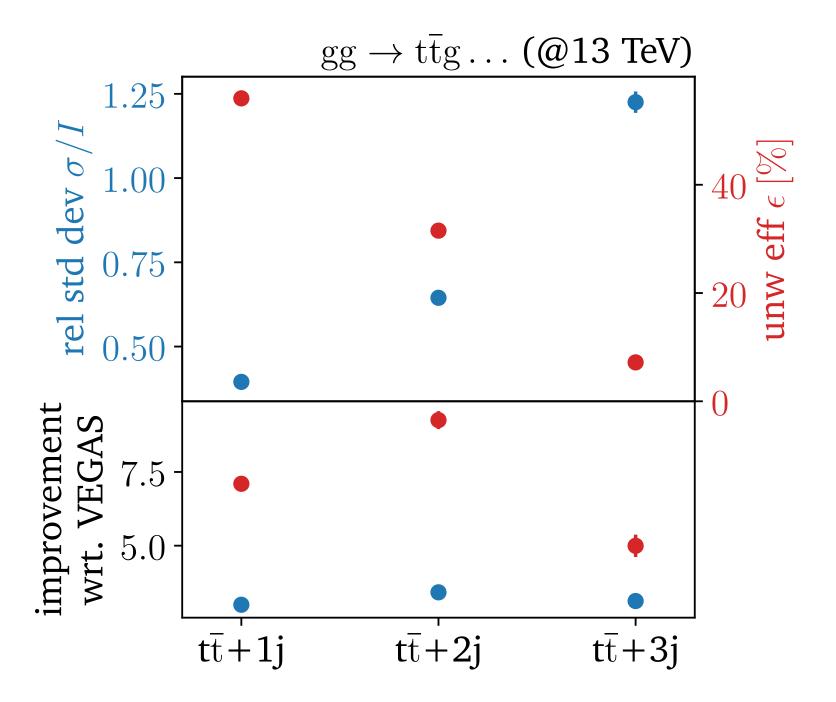
MadNIS often sends weight of many channels to 0

↓

dropping channels makes training and event generation more stable and efficient

Scaling with multiplicity





 $gg \rightarrow W^+ d\bar{u}gg$ 384 channels, 108 symm. 7x better than VEGAS

gg → ttggg 945 channels, 119 symm. 5x better than Vegas

Large improvements compared to Vegas even for high multiplicities and many channels!

Outlook

The MadNIS Reloaded

Large improvements, even for high multiplicities and complicated processes!

[2311.01548]

Future plans

Make MadNIS part of next MadGraph version

