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Fundamentals of unfolding

» Distributions /(7) of a physics variable 7 to be measured in particle physics experiments are often not
directly accessible.
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Fundamentals of unfolding

» Distributions /(7) of a physics variable 7 to be measured in particle physics experiments are often not

directly accessible.

A1) /\

2(s)

2.5= 2.5=

2.0= 2.0=

1.5= 1.5=

1.0= 1.0=

= I || I
-——‘..\—-—.—&.———\.".\——.—\—— 0.0= ; .. l‘

-2 0 2 4 6 8 10 -2




Fundamentals of unfolding

» Distributions /(7) of a physics variable 7 to be measured in particle physics experiments are often not

directly accessible.
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Fundamentals of unfolding

» Distributions /(7) of a physics variable 7 to be measured in particle physics experiments are often not

directly accessible.
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» Using Monte Carlo (MC) methods, the direct process from an assumption /(7)"°““' to the expected
measured distribution 2(s) can be simulated.

» The inverse process from the actual measured distribution 2(s) to the true distribution /(7) is difficult
and ill-posed: small changes in 2(5) can cause large modifications in the reconstructed /(7).
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» Distributions /(7) of a physics variable 7 to be measured in particle physics experiments are often not
directly accessible.
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» The inverse process from the actual measured distribution 2(s) to the true distribution /(7) is difficult
and ill-posed: small changes in 2(5) can cause large modifications in the reconstructed /(7).
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Why neural networks?

Traditionally:

> Matrix-based unfolding

5(s) = Jf(t) dt —)

detector binning
response
matrix

Various ways to invert the detector response matrix: SVD, IBU, IDS, etc.

”i=sz:f‘tj
j

General need for regularization: trade-off between bias and statistical uncertainty

Requires binning and can only unfold a few dimensions
With neural networks:

» ML-based unfolding
Unbinned: advantageous if one wants to derive quantities from the unfolding observables
Allows to unfold (and account for correlations in) many dimensions

Some methods allow for independent single-event unfolding



Several approaches

Event reweighting Conditional phase space sampling
> Omnifold [1911.09107] > GANSs [1912.00477]
> (%) » Latent Diffusion [2305.10399]

» Conditional Flow Matching [2305.10475]
» CcINN [2212.08674, 2006.06685]

> ()

Distribution mapping

» Direct Diffusion [2311.17175]
> Schrddinger Bridge [2308.12351]

> ()

(") These are not comprehensive lists. For a more extensive catalogue see for example the HEP ML Living Review
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(%) Latent Diffusion | ]

» Conditional Flow Matching [2305.10475]
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()

Dlstrlbutlo
Dlrect Diffusion [231 1. 171 75

]aQQO

Schrom'“ e 03
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Direct Diffusion (DiDi)

a0
dr

— V@(-X(t)a t)

AL ~P reco(xreco)

» Connect Xy and x; with a linear trajectory: x(t) = (1 = H)xg + tx,
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dx(7)
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Direct Diffusion (DiDi)

XI‘ cCO

» Connect Xy and x; with a linear trajectory: x(t) = (1 = H)xg + tx,

dx(t)

» The NN is regressed to predict the velocity field: Ve(x(2), 1) & e Rt

0
» For sampling, solve ODE starting from Xx;: Xo=Xx;+ | vy(x(2), H)dt



>

Ao ~ P model(xhard)

Connect X, and x; with a linear trajectory:

Direct Diffusion (DiDi)

dx(7)
dt

The NN is regressed to predict the velocity field:

<:>

- . V@(X(f), t)

x(t) = (1 — Dxy + 1x

dx(t) B

Vo(x(1), 1) = m

X1 — X

0

For sampling, solve ODE starting from Xx;: X = X + J Vo(x(2), 1)dt

L oss:

Zbipi = <[V9((1 — )xg +1x), 1) — (X — Xo)]2>

1

! N%( 10,1] )9 (-XOaxl)Np (xhard’xreco)

)



Several methods

Conditional phase space sampling

Omnifold | ] GANSs [1912.00477]
(*) I—atent . ' >
Condltlonal Flow Matchlng [2305 10475

- _ _ . o ——
Distribution mapping CINN (22 " 200eT0t
()
> Direct Diffusion [2311.17175]
Schrodinger Bridge | ]
()

(") These are not comprehensive lists. For a more extensive catalogue see for example the HEP ML Living Review
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Conditional Flow Matching (CFM)

<:>

dx(7)
dt — V@(X(t), [ ‘ xrec())
Xy ™ pmodel(xhard | xreco) €= platent(z)
» Connect Xy and € with a linear trajectory: x(1) = (1 = H)xy + te
dx(t)

» The NN is regressed to predict the velocity field: Vo(X(1), 1| Xpeeo) & rraR

0
» For sampling, solve ODE starting from e: Xg =€ +[ Vy(X(1), | Xep)dt

1

_ B 2
> Loss:  Zopy = ([e((1 = Dxg + 16, 1, Xpeo) = (6=Xp)] >r~%([0,11), (X0:Xreco) P Fnarastreco)s E~ A (0,1)



Several methods

Conditional phase space sampling

Omnifold | ] GANSs [1912.00477]
() Latent Diffusion [ ]

Conditional Elow.Matching,[o,

i'fCINN [2212 08674, 2006. 06685]

10475]

Distribution mapping

» Direct Diffusion [2311.17175]

Schrodinger Bridge | ]
()

(") These are not comprehensive lists. For a more extensive catalogue see for example the HEP ML Living Review
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Conditional INN (cINN)

g H(Xhard ‘ Areco

—1
6 (Z | xreco
Ao~ P model(xhard ‘ Areco <~ platent(z)
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Conditional INN (cINN)

g H(Xhard ‘ xreco)
ﬁ

<:>

—

—1
g@ (Z | XI‘GCO)
Xo ~ P model(xhard ‘ xreco) < platent(z)

> Bijective function between py,i.n(2) @and Prodel®hard | Xreco):

{ ag Q(Xha xr)

OXhard

pmodel(xhard ‘ xreco) =P latent(z) de =P lat.(Z) | det Jge |
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> Bijective function between py,i.n(2) @and Prodel®hard | Xreco):

{ ag Q(Xha xr)

axhard

prnodel(xhard ‘ xreco) 4 latent(z) de =P lat.(Z) | det Jge |

> Pairs (X,,.4; ) are passed through the NN to the latent space: 7= 8s(*hard | Xreco)
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Conditional INN (cINN)

g H(Xhard ‘ xreco)
ﬁ

<:>

—

—1
g@ (Z | XI‘GCO)
Xo ~ P model(xhard ‘ xreco) < platent(z)

> Bijective function between py,i.n(2) @and Prodel®hard | Xreco):

{ ag Q(Xha xr)

Pmodel¥hard | Xeco) = Platent(2) | de 3
*hard

— b (2) |det Jg9|

> Pairs (X,,.4; ) are passed through the NN to the latent space: 7= 8s(*hard | Xreco)

xI’GCO

» Once trained, one can sample -conditioned on reco- from the latent:  Phard™®) & Pmodeihard | Xreco)
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Conditional INN (cINN)

g H(Xhard ‘ xreco)
ﬁ

<:>

1
gy (2] Xreco)

Ao~ P model(xhard ‘ xreco)

>

Bijective function between py,...«(2) and p..oqe1Xnara | X;

Pairs (Xhard9

Once trained, one can sample -conditioned on reco- from the latent:

. oss:

€CO) )

{ ag Q(Xha xr)

axhard

P model(xhard ‘ xreco) — platent(z) de

) are passed through the NN to the latent space:

xI’GCO

Z cINN — — <10g pmodel(xhard ‘ xreco)>(x0,x1)~p(xhard,xreco)

L~ P latent(z)

=P () |det,,

£ = gH(xhard ‘ xreco)

P hard(x) ~ p model(xhard ‘ xreco)
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Z + Jets events

Z(pr > 200 GeV) + jets events generated at \/E = 14 TeV with Pythia 8.244 and Delphes
simulation 3.5.0 available on Zenodo. Slight modification from [1911.0910/] dataset
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Z + Jets events

Z(pr > 200 GeV) + jets events generated at \/E = 14 TeV with Pythia 8.244 and Delphes
simulation 3.5.0 available on Zenodo. Slight modification from [1911.0910/] dataset

Six widely-used jet substructure observables:

» Jet mass m » Groomed mass log p = 2log (mqp / p7)

» Jet width w » Groomed momentum fraction Ty = Tlﬁ =1

» Jet constituents multiplicity NV » N-subjettiness ratio 7, = 7/=!/7/=!
2 '
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Results (DiDi)
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Top-palir events: unfolding to parton-level

Matrix elements are evaluated at \/E = 13 TeV using MadGraph_aMC@NLO. Showering and

hadronization are simulated with Pythia8, and detector response is simulated with Delphes with
the standard CMS card. For a detailed description see [2305.10399].
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Unfolding from 6 final-state particles (blv)(bqq):
> 4 DoFs for the lepton

» 3 DoFs for the missing p7

> 5 DoFs per jet (4-momentum + b-tag)
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Top-palir events: unfolding to parton-level

Matrix elements are evaluated at \/E = 13 TeV using MadGraph_aMC@NLO. Showering and

hadronization are simulated with Pythia8, and detector response is simulated with Delphes with
the standard CMS card. For a detailed description see [2305.10399].

Unfolding from 6 final-state particles (blv)(bqq):
> 4 DoFs for the lepton

» 3 DoFs for the missing p% Total: 27 DoFs at reco-level
> 5 DoFs per jet (4-momentum + b-tag) and 19 DoFs at parton-level

17


https://arxiv.org/abs/2305.10399

Top-palir events: unfolding to parton-level

Much harder problem:

» Unfolding to parton-level is not only inverting detector effects, but rather inverting the entire
forward simulation chain
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Top-palir events: unfolding to parton-level

Much harder problem:

» Unfolding to parton-level is not only inverting detector effects, but rather inverting the entire
forward simulation chain

» Faithful modeling of complex correlations at parton-level, i.e., W boson and top mass
resonances

> Non-trivial combinatorics between physics objects at both levels

Adding transformers:

» Transfermer and Tra-CFM as an extension to the cINN and CFM [2310.07752]. A transformer is
employed to encode correlations at reco and parton-level.

18
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» Unfold:
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» Unfold:
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Summary and outlook

ML-based unfolding is an unbinned transformative analysis tool capable of dealing with correlations
accross many dimensions.

Distribution mapping can be trained on matched and unmatched data and is relatively fast to train

CFM and cINN both learn the phase space probabilities for each event, so it is best suited to
describe complex detector effects, but their also more complex architectures to train.

Parton-level unfolding is a reasonably complicated task, but transformers help greatly in accounting
for correlations and resonances reconstruction

The mass parametrization allows for more efficient unfolding without the need of very large
networks

Single-event unfolding, calibrated posteriors, compare to other models...

2



Thanks for your attention!
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Direct Diffusion (DiDi)

<:>

dx(7)
dt — Vﬁ(x(t)a t)
Xo ~ P model(xhard) X ~P reco(xreco
Connect x; and x; with a linear trajectory: x(t) = (1 = xp + 1xy
dx(t)
The NN is regressed to predict the velocity field: Vo(x(1), 1) = e Rt

For sampling, solve ODE starting from x;: Xy =x; + J

L oss:

0

1
Zipi—p = {[Ve((1 = Dxg + 131, 1) = (] = X))]*)

Zipi-u = {[Ve((1 = Dxg + 1x1, 1) = (x; = xp)]*)

Vo(x(2), 1)dt

ti~%([0,1]), (x()axl)Np (Xhardaxreco)

i~2([0,1]), X0~DP Xnard) X1 ~P Xeco)

)
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Z + Jets events

Z(pr > 200 GeV) + jets events generated at \/E = 14 TeV with Pythia 8.244 and Delphes
simulation 3.5.0 available on Zenodo

Six widely-used jet substructure observables:

» Jet mass m » Groomed mass logp = 2log (mqp / p7)

» Jet width w » Groomed momentum fraction Ty = Tlﬁ =1

» Jet constituents multiplicity NV » N-subjettiness ratio 7, = 7/=!/7/=!
2 '

Networks of ~3M parameters

19M training events and 1M validation events

~4M events for testing
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https://doi.org/10.5281/zenodo.10668638
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Single events
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Top-palir events: unfolding to parton-level

Matrix elements are evaluated at \/E = 13 TeV using MadGraph_aMC@NLO. Showering and

hadronization are simulated with Pythia8, and detector response is simulated with Delphes with
the standard CMS card. For a detailed description see [2305.10399].

Unfolding from 6 final-state particles (blv)(bqq):
> 4 DoFs for the lepton

» 3 DoFs for the missing p% Total: 27 DoFs at reco-level
> 5 DoFs per jet (4-momentum + b-tag) and 19 DoFs at parton-level

Non-bayesian networks
cINN ~ 8M parameters, CFM ~ 6M, Tra-CFM, Transfermer ~ 3M

10M training events and 1M testing events
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Top-palir events: unfolding to parton-level

Adding transformers:;

> For transfermer, likelihoods are factorized autoregressively on all previous parton-level
dimensions and reco-level event:
n
_ (0 (0) (i—1)
pmodel(xpart‘xreco) — Hpmodel(xpart ‘ C(Xpart, Tt xpart ’ xreco))
=1

» For Tra-CFM, the transformer is made time-dependent and a small CFM predicts velocities at
each different dimension:

V(Xpart(t)a [ ‘ ‘XI'ECO) — (V(l)(c(l)a t)a R V(Ifl)(c(l’l), t))
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Top-palir events: unfolding to parton-level

Tra-CFM
(1) (3) 1 (1y ... (n (n)
xhard xhard xlgec)o(t xO ) xgego(tlxo ) t
|
l l § y
ey o) ) ey
l L P
Transformer-Encoder Transformer-Decoder
Self-Attention: Self-Attention:
Hard-level correlations Reco-level correlations
> Cross-Attention:
- Combinatorics
e

V(X0 (), E]Xharg) = (v(l)(c(l)’ £), -, v (M, t))
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