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Two main difficulties: IR singularities, arising from real and virtual 
radiation, and multi-loop amplitude calculations

IR singularities:  
       i) they are unphysical: require SUBTRACTION SCHEMES 
      ii) we use NESTED-SOFT COLLINEAR [Caola, Melnikov, Röntsch, ’17]
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RECURRING
OPERATORS
AT NLO

Virtual corrections : the IR content of virtual amplitudes is 
well-known [Catani ’98]
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Making use of NSC formalism to regularize this divergences we 
obtain [Caola, Melnikov, Röntsch ’17]
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= +
c4

ϵ4
+

c3

ϵ3
+

c2

ϵ2
+

c1

ϵ
+ c0

We expect the same to happen for d ̂σVV

∼ I2
V(ϵ)
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DOUBLE 
REAL

REAL 
VIRTUAL

Mhh… I must expect  
 

also in  and  
(Ti ⋅ Tj) (Tk ⋅ Tl)

d ̂σRV d ̂σRR

And now… HOW can I 
CANCEL the poles of 
all these objects???

QUARTIC Color 
Correlations



Here it is what we find [Devoto, Melnikov, Röntsch, Signorile-Signorile, D.M.T., 2310.17598]

QUARTIC
COLOR
CORRELAT.
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Y(ss)
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2 ⟨M0 IS IV + IV IS M0⟩ + . . .
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The benefits of introducing these Catani-like operators:
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NB square of NLO

Y =
[αs]2

2 ⟨M0 [IV + IS + IC]2 M0⟩ + . . . ≡
[αs]2

2
⟨M0 |I2

T |M0⟩+ . . .

Problem of QUARTIC COLOR-CORRELATED poles disappear, 
since everything is written in terms of I2

T(ϵ) ∼ 𝓞(ϵ0)
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Work in progress: next step is a generalization to 
asymmetric initial state and arbitrary final 
state
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CONCLUSIONS 
AND 
OUTLOOK

We find recurring building blocks, i.e. , 
,  and , which let us solve the 

problem of color-correlated poles

IV(ϵ)
IS(ϵ) IC(ϵ) IT(ϵ)

Outlook: application of the method to pheno-
studies

1
2
3
4
5

The procedure is (almost) entirely process 
independent 

Work in progress: implementation of the results 
in a numerical code
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