p-adic reconstruction of rational functions in multi-loop amplitude calculations

based on arXiv:2312.03672

Herschel A. Chawdhry Florida State University

ACAT conference 2024 at Stony Brook (NY), USA
Wednesday $13^{\text {th }}$ March 2024

Context: precise predictions for high-energy collider processes

Executive summary (for experts)

- Performing elementary arithmetic on large rational functions is a central bottleneck in high-precision predictions for highenergy collider processes
- Specifically: in multi-loop amplitude calculations
- In recent years, finite-field interpolation methods have widely been employed to improve speed+reach of these calculations
- In parallel, it has been observed that symbolic expressions can be greatly simplified by partial fractioning
- This talk: can we interpolate directly in partial-fractioned form and hence benefit from the best of both worlds?

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

Why numerical (finite-field) interpolation methods?

- Core idea: perform repeated numerical calculations and then interpolate result
- Bypasses large intermediate expressions
- Generic feature of symbolic calculations (not specific to physics)
- Use finite-field numbers instead of real numbers. (advantage: exact results)
- Long-used in computer algebra (e.g. Mathematica), now also used in physics
- e.g. [1406.4513 - Manteuffel, Schabinger], [1608.01902 - Peraro]
- Various libraries, e.g. FiniteFlow, FireFly, ...
- Has enabled calculation of many new multi-loop multi-scale amplitudes
- Most computing time is spent evaluating the numerical probes
- Number of probes is determined by the polynomial degrees of the expressions in the final result

A typical multi-loop toolbox

Previous work on optimising numerical reconstruction (in HEP)

- Guess denominators \rightarrow reduces probes by factor of 2
- e.g. [1812.04586], [2101.08283], and many more
- Single-variable partial fractioning
- e.g. [Wang ‘81], [1908.04301], [2106.08664], [2102.02516], and more
- Reconstructing in partial-fractioned form using very high precision floating-point evaluations [1904.04067]
- using algebraic-geometry techniques + p-adic numbers to study the singular limits of rational functions [2203.04269]
- Combining several of the above, e.g. [2010.14525], [2203.17170]
- Evaluate at roots of unity, exploiting fast Fourier transform

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

Partial fractioning

- Widely used in recent years to simplify final (and intermediate) results of heavy calculations
- Popular libraries: Singular, MultivariateApart
- Example throughout this talk: the largest rational function in the largest IBP expression needed for the 2-loop full-colour QCD amplitudes for $p p \rightarrow \gamma \gamma j$
- Analytic expression courtesy of authors (Agarwal, Buccioni, von Manteuffel, Tancredi) of [2105.04585]
- Partial-fractioned form is $\mathrm{O}(100)$ times smaller than common| denominator form: | Form of expression | Size | Parameters to fit |
| :---: | :---: | :---: | :---: |
| | Common-denominator | 605 MB | $1,369,559$ |
| | Partial-fractioned | 4 MB | 14,558 |
- This talk: from numeric evaluations, reconstruct such expressions directly in partial-fractioned form
- Aim to improve speed (and hence reach) of loop calculations
- Reconstruct piece-by-piece
- Capability to better understand and exploit the structure of these functions

Why does partial fractioning simplify our rational functions?

- Rational functions in multi-loop calculations are special
- In common-denominator form, the denominator factorises: $\Delta(x)=\prod_{a}\left[f_{a}(x)\right]^{\nu_{a}}$
- But this doesn't explain the simplification
- Consider 2 rational functions with identical common denominators.
- Now partial-fraction them both
"Random" rational function

$$
\begin{aligned}
& \text { Taken from a } \\
& \text { multi-loop calculation }
\end{aligned} \quad R=\sum_{i} \frac{n_{i}}{d_{i}} \quad \tilde{R}=\sum_{j} \frac{\tilde{n}_{j}}{d_{j}}
$$

- Surprise: only R simplifies under partial fractioning
- So there is some interesting physics hiding here!
- Furthermore, $\left\{d_{i}\right\} \subset\left\{d_{j}\right\}$

Recall:

Form of expression	Size	Parameters to fit				
Cor				Common-denominator	605 MB	$1,369,559$
:---:	:---:	:---:				

- Observation: just knowing which d_{i} to keep would give a $25 x$ simplification.

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

A brief history of p-adic numbers

- Described/explored by Kurt Hensel in 1897
- Widely used in computer algebra for several decades
- Finding rational solutions to various types of equations
- Reconstruct a rational number from its p-adic expansion
- Appearance in particle physics too!
- p-adic / adelic quantum mechanics / string theory [since '80s/'90s]
- Ansatze for amplitudes [De Laurentis \& Page, 2022]
- Constrained ansatze in common-denominator form, to then be fitted with standard finite-field methods
- This talk: interpolate rational functions directly in partial-fractioned form, from p -adic evaluations.
- In practice, will perform evaluations at special integer points that are
"p-adically small" (but not small according to usual absolute value)

Brief intro to p-adic numbers

- p-adic numbers Q_{p} are an alternative completion of the rationals Q
- Alternative absolute value: $\left|\left(a^{*} \mathrm{p}^{n} / \mathrm{b}\right)\right|_{\rho}=1 / \mathrm{p}^{n}$, where p is prime and $\mathrm{a}, \mathrm{b}, \mathrm{p}$ are coprime
- For each prime p, a separate field Q_{p}
- Nice results, e.g. Hasse's local-global principle: certain equations have solutions in Q iff they have solutions in R and in each Q_{p}
- Can expand any rational number x as a power series in p
$>$ e.g. $80=3+4 * 7+1^{*} 7^{2}$
> e.g. $-1=6+6 * 7+6 * 7^{2}+6 * 7^{3}+O\left(7^{4}\right)$
$>$ e.g. ${ }^{1 / 2}=4+3 * 7+3^{*} 7^{2}+3^{*} 7^{3}+O\left(7^{4}\right)$
$>$ e.g. $(2 / 21)=3 * 7^{-1}+2+2 * 7+2 * 7^{2}+2 * 7^{3}+O\left(7^{4}\right)$
- If x is integer then the coefficient of p^{0} is $(x \bmod p)$
- Expansion operation commutes with all arithmetical operations $+*$ - /

Implementing p-adic arithmetic on a computer

- There are many ways to implement p -adic arithmetic on a computer.
- This work focusses on reducing number of probes (regardless of how they're performed)
- One option: work directly with power-series in p up to some chosen p-adic order.
- Possible loss of precision during probe (albeit better controlled than in floating-point real numbers)
- Another option (employed here): perform probes at special integer points
e.g.

$$
\begin{aligned}
& 4+3 * 7+3 * 7^{2}+3 * 7^{3}+\mathcal{O}\left(7^{4}\right) \\
& 4+3 * 7+3 * 7^{2}+3 * 7^{3}=1201
\end{aligned}
$$

- No loss of precision at intermediate stages of calculation

Important caveat:

- It can be beneficial to use small primes e.g. Q_{101} (in contrast to finite-field practice)
- But for now, still prudent to assume p-adic probes to be slower than finite-field probes.
- Can use finite fields to perform the integer probes (here, typically at 10-digit points)
- The size of the finite field does not need to match the p of the p-adic field
- e.g. use 64-bit finite fields to evaluate at an integer point that is special when viewed in Q_{101}

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

Partial-fractioned reconstruction: key idea

- Suppose we can find a p-adic point that makes one of the (candidate) denominators become p -adically smaller than all of the others
- i.e. $\exists k: \forall i \neq k, \quad\left|d_{k}(\bar{x})\right|_{p}<\left|d_{i}(\bar{x})\right|_{p}$
- Then if we evaluate R at that point, we get a p -adic series

$$
R(\bar{x})=\frac{n_{k}(\bar{x})}{d_{k}(\bar{x})}+\mathcal{O}\left(\frac{1}{p^{m-1}}\right)
$$

- If the candidate term is absent, we will notice and can skip reconstruction
- If the candidate term is present, we can perform several evaluations and interpolate n_{k}
- Then repeat for other candidate terms

A complication: bases/relations between partial-fractioned terms

- There are relations between partial-fractioned candidate terms e.g. $\frac{1}{x^{2} y}-\frac{1}{x^{2}(x+y)}-\frac{1}{x y(x+y)}=0$
- Choice of basis:
- Basis in MultivariateApart / Leinartas's decomposition
- Chosen depending on a specified variable ordering
- Avoids introducing new spurious factors, but can still introduce spurious higher powers of existing factors
- Unique basis -> allows vectorised addition in symbolic calculations
- Basis in this work: prioritises avoiding introducing spurious higher powers
- Basis customised to given rational function, so that no partial-fractioned term has stronger divergence than the overall function
- Further study needed to see which basis choices are "best"

Choice of probe weights

- A first attempt: exponential weights
- Naively, might expect to need large powers to uniquely pick out one partialfractioned term.
- e.g. if singularity degrees are known to be bounded to be below 10, we can set $\left(s_{12}, s_{23}, s_{34}\right) \sim\left(p^{100}, p^{10}, p\right)$. Then if the rational function diverges there like $1 / p^{273}$, we know we have picked out the term $1 /\left(\mathrm{s}_{12^{2}} \mathrm{~S}_{23}{ }^{7} \mathrm{~S}_{34}\right)$
- But this strategy would require evaluating to very high p-adic precision.
- Smart choice: low weights
- Choose a limited set of small weights
- e.g. $\left(s_{12}, s_{23}, s_{34}\right) \sim\left(p, p^{2}, p\right)$
- Repeatedly cycle through this set, trying to find a probe point that picks out a single candidate partial-fractioned term.
- In this work, used 6k distinct combinations of weights
- Heuristically, seems to work

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

Results

- Reconstructed a very large rational function at the edge of current computational techniques
- Specifically: largest rational function in one of the rank 5 IBP expressions needed for calculating non-planar 2-loop 5-point massless QCD amplitudes.

Expression	Size	Parameters to fit
Original	605 MB	$1,369,559$
Reconstructed	4.5 MB	52,527 (of which 15,403 non-zero)

- Required $\sim 60 \mathrm{k} p$-adic evaluations (per prime), whereas conventional approach would require 1.4 M finite-field evaluations (per prime)
- Reconstructed result is 130 times smaller than in conventional approach
- Signs of further patterns and simplifications (see next slide)

Hints of additional pattern and structure

Of the 52k fitted parameters, only 15k are non-zero

- Can we predict these in advance?

Expression	Size	Parameters to fit
Original	605 MB	$1,369,559$
Reconstructed	4.5 MB	52,527 (of which 15,403 non-zero)

A few of the
reconstructed terms:

$$
\begin{aligned}
& \frac{\frac{45}{1024} s_{45}^{6} s_{12}^{3}}{(D-3) s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& +\frac{\frac{9}{5120} s_{45}^{6} s_{12}^{3}}{(D-1) s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& -\frac{\frac{693}{5120} s_{45}^{6} s_{12}^{3}}{(2 D-7) s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& -\frac{\frac{3}{1024} s_{45}^{6} s_{12}^{3}}{s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& +\frac{-\frac{45 s_{45}^{6} s_{51}^{2}}{1024}-\frac{135 s_{45}^{6} s_{51} s_{12}}{1024}-\frac{135 s_{45}^{6} s_{12}^{2}}{1024}}{(D-3) s_{34}^{4}\left(s_{23}-s_{45}-s_{51}\right)^{3}} \\
& +\frac{-\frac{9 s_{55}^{6} s_{51}^{2}}{5120}-\frac{27 s_{55}^{6} s_{51} s_{12}}{5120}-\frac{27 s_{45}^{6} s_{12}^{2}}{5120}}{(D-1) s_{34}^{4}\left(s_{23}-s_{45}-s_{51}\right)^{3}} \\
& +\frac{\frac{693 s_{45}^{6} s_{51}^{2}}{5120}+\frac{2079 s_{5}^{6} s_{51} s_{12}}{5120}+\frac{2079 s_{45}^{6} s_{12}^{2}}{5120}}{(2 D-7) s_{34}^{4}\left(s_{23}-s_{45}-s_{51}\right)^{3}} \\
& +\frac{-\frac{3 s_{45}^{6} s_{51}^{2}}{104}-\frac{9 s_{45}^{6} s_{51} s_{12}}{1024}-\frac{9 s_{45}^{6} s_{12}^{2}}{1024}}{s_{34}^{4}\left(-s_{23}+s_{45}+s_{51}\right)^{3}}
\end{aligned}
$$

Hints of additional pattern and structure

Of the 52k fitted parameters, only 15k are non-zero

- Can we predict these in advance?

Expression	Size	Parameters to fit
Original	605 MB	$1,369,559$
Reconstructed	4.5 MB	52,527 (of which 15,403 non-zero)

A few of the
reconstructed terms:

$$
\begin{aligned}
& \frac{\frac{45}{1024} s_{45}^{6} s_{12}^{3}}{(D-3) s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& +\frac{\frac{9}{5120} s_{45}^{6} s_{12}^{3}}{(D-1) s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& -\frac{\frac{693}{5120} s_{45}^{6} s_{12}^{3}}{(2 D-7) s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& -\frac{\frac{3}{1024} s_{45}^{6} s_{12}^{3}}{s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& +\frac{-\frac{45 s_{45}^{6} s_{51}^{2}}{1024}-\frac{135 s_{45}^{6} s_{51} s_{12}}{1024}-\frac{135 s_{45}^{6} s_{12}^{2}}{1024}}{(D-3) s_{34}^{4}\left(s_{23}-s_{45}-s_{51}\right)^{3}} \\
& +\frac{-\frac{9 s_{55}^{6} s_{51}^{2}}{5120}-\frac{27 s_{55}^{6} s_{51} s_{12}}{5120}-\frac{27 s_{45}^{6} s_{12}^{2}}{5120}}{(D-1) s_{34}^{4}\left(s_{23}-s_{45}-s_{51}\right)^{3}} \\
& +\frac{\frac{693 s_{45}^{6} s_{51}^{2}}{5120}+\frac{2079 s_{54}^{6} s_{51} s_{12}}{5120}+\frac{2079 s_{45}^{6} s_{12}^{2}}{5120}}{(2 D-7) s_{34}^{4}\left(s_{23}-s_{45}-s_{51}\right)^{3}} \\
& +\frac{-\frac{3 s_{45}^{6} s_{51}^{2}}{104}-\frac{9 s_{45}^{6} s_{51} s_{12}}{1024}-\frac{9 s_{45}^{6} s_{12}^{2}}{1024}}{s_{34}^{4}\left(-s_{23}+s_{45}+s_{51}\right)^{3}}
\end{aligned}
$$

Hints of additional pattern and structure

Of the 52k fitted parameters, only 15k are non-zero

- Can we predict these in advance?

Expression	Size	Parameters to fit
Original	605 MB	$1,369,559$
Reconstructed	4.5 MB	52,527 (of which 15,403 non-zero)

A few of the
reconstructed terms:

$$
\begin{aligned}
& \frac{\frac{45}{1024} s_{45}^{6} s_{12}^{3}}{(D-3) s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& +\frac{\frac{9}{5120} s_{45}^{6} s_{12}^{3}}{(D-1) s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& -\frac{\frac{693}{5120} s_{45}^{6} s_{12}^{3}}{(2 D-7) s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& -\frac{\frac{3}{1044} s_{45}^{6} s_{12}^{3}}{s_{34}^{4} s_{51}\left(-s_{23}+s_{45}+s_{51}\right)^{3}} \\
& +\frac{-\frac{45 s_{45}^{6} s_{51}^{2}}{1024}-\frac{135 s_{45}^{6} s_{51} s_{12}}{1024}-\frac{135 s_{54}^{6} s_{12}^{2}}{1024}}{(D-3) s_{34}^{4}\left(s_{23}-s_{45}-s_{51}\right)^{3}} \\
& +\frac{-\frac{9 s_{55}^{6} s_{51}^{2}}{5120}-\frac{27 s_{55}^{6} s_{51} s_{12}}{5120}-\frac{27 s_{54}^{6} s_{12}^{2}}{5120}}{(D-1) s_{34}^{4}\left(s_{23}-s_{45}-s_{51}\right)^{3}} \\
& +\frac{\frac{693 s_{45}^{6} s_{51}^{2}}{5120}+\frac{2079 s_{5}^{6} s_{51} s_{12}}{5120}+\frac{2079 s_{45}^{6} s_{12}^{2}}{5120}}{(2 D-7) s_{34}^{4}\left(s_{23}-s_{45}-s_{51}\right)^{3}} \\
& +\frac{-\frac{3 s_{45}^{6} s_{51}^{2}}{1024}-\frac{9 s_{45}^{6} s_{51} s_{12}}{1024}-\frac{9 s_{45}^{6} s_{12}^{2}}{1024}}{s_{34}^{4}\left(-s_{23}+s_{45}+s_{51}\right)^{3}}
\end{aligned}
$$

Outline

1. Introduction
2. Why numerical reconstruction?
3. Why partial-fractioned form?
4. p-adic numbers
5. Details of interpolation strategy
6. Results
7. Conclusion

Summary and Outlook

- Method to reconstruct rational functions directly in partial-fractioned form
- Uses p-adic numbers to harness the major (100 times!) simplification of rational functions under partial fractioning
- Simplification is specific to loop calculations, and is surprising from computer algebra viewpoint - physical origin?
- Demonstrated by reconstructing the largest rational function in one of largest IBP coefficients needed for non-planar 2-loop 5-point massless QCD amplitudes.

Expression	Size	Parameters to fit
Original	605 MB	$1,369,559$
Reconstructed	4.5 MB	52,527 (of which 15,403 non-zero)

- Promising technique for:
- Calculating rational functions (in amplitudes and IBPs)
- Studying the reasons for these simplifications (analytically?)
- Exploring the further simplification hinted at in these results
Find out more: arXiv:2312.03672

