column fow

CLUSTER OF EXCELLENCE
QUANTUM UNIVERSE

columnflow: Fully automated analyses via flow of columns over distributed resources

Marcel Rieger
for the C / f Team

ACAT 2024
15.3.2024

General idea

- Python-based framework for nano-like inputs
- End-to-end orchestration \& automation
- No reliance on single local cluster or local storage
- Adapt to any remote cluster and storage system
- HTCondor, Slurm, CMS-CRAB, LSF
- Store via file://, xrootd://, gsiftp://, webdav://
- Persistent intermediate outputs
- Debugging, reuse, sharing across groups

Key concepts

- Experiment agnostic core
- Organize experiment-specific recipes in extensions
- Use awkward arrays as interface, parquet as file format
- Give users full control over processing tools
(NumPy, TensorFlow, coffea-nano-format, pandas, ...)
- High degree of code-reuse and collaboration
- Define workflows with luigi + law, metadata with order
- Control and execution via CLI, scripts and notebooks

Automation stack

Example graph*

Parallelization over

- Campaigns \& datasets
- Files
- Systematics
- Typically $\mathcal{O}(10 \mathrm{k}) 60 \mathrm{~min}$
jobs, however, on standard resources standard resource
\checkmark HTCondor, CRA
Graph execution
- Single command can trigger the full pipeline from inputs to plots
- Example

Documentation
O github.com/columnflow

Simple customization

- Provide simple functions producers, to create
- calibrated (updated) columns
- selection mask
- ML training \& evaluatio - variables
- Nesting enables for easy reuse and capsulation

General idea

- Python-based framework for nano-like inputs
- End-to-end orchestration \& automation \triangleright From events to plots in a single command
- No reliance on single local cluster or local storage
- Adapt to any remote cluster and storage system
\triangleright HTCondor, Slurm, CMS-CRAB, LSF
■ Store via file://, xrootd://, gsiftp://, webdav://
- Persistent intermediate outputs
\triangleright Debugging, reuse, sharing across groups

Key concepts

- Experiment-agnostic core
- Use awkward arrays as interface, parquet as file format
- Give users full control over tools used (NumPy, TensorFlow, coffea-nano-format, pandas, ...)
- Define workflows with luigi + law, metadata with order
- Capsulation of standard recipes
- High degree of code-reuse \& collaboration

Automation stack

国 docs
() repo
workflow engine (originally by Spotify)
luigi analysis workflow
layer for HEP \& scale-out
(experiment independent)

Example graph

Just a suggestion, can be easily altered or amended by analyses

Nano inputs -----.--

Simple customization

- Provide simple functions, producers, to create
- calibrated (updated) columns
- selection masks
- new columns
- ML training \& evaluation
- variables
- Nesting enables for easy reuse and capsulation

@producer!

uses $\{$ inuuon", "Muon. pt", "Muon.eta",
\},
produces $\{$
\}, "muon_weight", "muon_weight_up", "muon_weight_down",
\}, "muon_weight", "m
\# only allowed
mc_only True,
def muon_weights(
self: Producer,
events: ak-Array,
events: ak.Array,
moon mask: ak.Array | type(Ellipsis) = Ellipsis,
tskwargs,
) -> ak.Arraray:
-> ak.Array:
."."
© Creates muon weights using the correctionlib. m"
"

pt = flat_np_view(events.Muon.pt [muon_mask], axis-1)
loop over systematics
syst, postfix in
syst, posttix
("sf", ""),

sf_flat = self.muon_sf_corrector(self.year, abs_eta, pt, syst)
\# add the correct layout to it
sf $=$ layout_ak_array(sf_flat, events.Muon.pt [muon_mask])
\# create the product over all muons per event
weight $=$ ak.prod(sf, axis-1, mask_identity False)
events = set_ak_column (events, f"muon_weight\{postfix\}", weight,

Plots \& results \qquad

Example graph

Just a suggestion, can be easily altered or amended by analyses

Nano inputs -------

Simple customization

- Provide simple functions, producers, to create
- calibrated (updated) columns
- selection masks
- new columns
- ML training \& evaluation
- variables
- Nesting enables for easy reuse and capsulation

Graph execution

- Single command can trigger the full pipeline from inputs to plots, or any intermediate task
- Example
law run cf.PlotVariables1D \}
--version dev1 \}
--datasets ttbar,dy
--calibrators jec,jer \}
--selector full \}
--producers muon_weights
--variables jet*_\{eta,pt\} \}
--workflow \{crab,htcondor, ...\}

Plots \& results \qquad

Backup
columnflow in depth

- Python framework for vectorized, columnar HEP analysis with flat (nano-like) inputs
- Mostly experiment agnostic core, plenty of CMS-related specializations on top
- Using awkward arrays + coffea nano-scheme, parquet as file format
- Workflows with luigi/law, metadata definition using order
- Our initial wishlist
- End-to-end orchestration \& automation - One command can trigger the entire workflow
- Highly parallel execution on any remote batch system - HTCondor, Slurm, LSF, WLCG, CMS-CRAB, ...
- Seamless integration of any remote storage system
- Storage: file://, xrootd://, gsiftp://, webdav://, ...
- No reliance on custom, local hardware
\triangleright We need to be able to invite external collaborators
\triangleright Reduction in speed (!) to be compensated with high parallelism
- Persistent intermediate outputs
- Easy reuse across groups, ML applications, working with students ...

Operations

- Extension
- Selection (creating masks)
- Reduction (applying masks)
- Extension
- Merge

\longmapsto Columns \longrightarrow

Operations

- Extension
- Selection (creating masks)
- Reduction (applying masks)
- Extension
- Merge

\longmapsto Columns \longrightarrow

Operations

- Extension
\downarrow Selection (creating masks)
- Reduction (applying masks)
- Extension
- Merge

Operations

$凶$ Extension
\downarrow Selection (creating masks)
\downarrow Reduction (applying masks)

- Extension
- Merge

Operations

Extension
\downarrow Selection (creating masks)
\downarrow Reduction (applying masks)
$凶$ Extension

- Merge

Operations

Extension
\downarrow Selection (creating masks)
\downarrow Reduction (applying masks)
\checkmark Extension
\star Merge

Operations

\checkmark Extension
\downarrow Selection (creating masks)
\downarrow Reduction (applying masks)
\downarrow Extension
\star Merge

- In-memory
- Trivial
- NumPy / awkward array provide all necessary tools and helpers
- Across a large scale analysis with persistent intermediate files
－In－memory
－Trivial
－NumPy／awkward array provide all necessary tools and helpers
－Across a large scale analysis with persistent intermediate files
－田 represent input files
－Typically $\mathcal{O}(1 k-10 k)$
\triangleright High parallelism，only single－core requirement
\triangleright Chunked reading with IO offloading to threads
－日 and 日 represent columns，potentially stored in additional files and same event order
－Flexible decisions by analyses whether to store columns and when to load them
－Can be written \＆read in multi－threaded IO
\triangleright Only write merged $⿴ 囗 十$ when necessary
- 1 Fully orchestrated workflow
- Only a suggestion, but able to model majority of analyses
- Can be altered or created from scratch by analyses

- 1 Fully orchestrated workflow
- Only a suggestion, but able to model majority of analyses
- Can be altered or created from scratch by analyses

- 1 Fully orchestrated workflow
- Only a suggestion, but able to model majority of analyses
- Can be altered or created from scratch by analyses

- 3 Collection of standardized column producers (CMS)
- Mostly SF and weight production using correctionlib \rightarrow jec, jer, tec, e_sf, mu_sf, trigger_sf, btag_sf, ...
- Plug-in mechanism for analyses
- 1 Fully orchestrated workflow
- Only a suggestion, but able to model majority of analyses

live task graph

Single producer

Nested producer

```
@producer!
    uses={
    },
        "muon_weight", "muon_weight_up", "muon_weight_down",
    },
        only allowed on-m
    mc_only=True,
def muon_weights(
    self: Producer,
    muon_mask: ak.Array | type(Ellipsis) = Ellipsis,
        type(Ellipsis) = Ellipsis,
) -> ak.Array
        mCreates muon weights using the correctionlib.
        abs_eta = flat_np_view(abs(events.Muon.eta[muon_mask]), axis=1)
        pt = flat_np_view(events.Muon.pt[muon_mask], axis=1)
    # loop over systematic
        syst, postfix
        ("s+","),'"up"),
        ("systdown","_down"),
    ]:
    sf_flat = self.muon_sf_corrector(self.year, abs_eta, pt, syst)
    sf = layout_ak_array(sf_flat, events.Muon.pt[muon_mask])
    # create the product over all muons per event 
    events = set_ak_column(events, f"muon_weight{postfix}", weight, value_type=np.float32)
    events
```

```
@producer(
    uses={
        category_ids, features, normalization_weights, normalized_pdf_weight,
        tau_weights, electron_weights, muon_weights, trigger_weights,
    },
        category_ids, features, normalization_weights, normalized_pdf_weight,
        normalized_murmuf weight, normalized_pu_weight, normalized btag_weights,
        tau_weights, electron_weights, muon_weights, trigger_weights,
},
def default(self: Producer, events: ak.Array, **kwargs) -> ak.Array:
    events = self[category_ids](events, **kwargs)
    events = self[features](events, **kwargs)
    # mC-only weights
        self.dataset_inst.is_mc:
    events = self[normalization_weights] (events, **kwargs)
    events = self[normalized_pdf_weight](events, ** kwargs)
    # normalized renorm./fack_weivi
    events = self[normalized_murmuf_weight](events, *kwargs)
    # normatized pu weights 
    events = self[normalized_btag_weights](events, **kwargs)
    events = self[tau_weights] (events, ***wargs)
    events = self[electron_weights](events, **kwargs)
    # muon weight
    events = self[muon_weights] (events, **kwargs)
    events = self[trigger_weights](events, **kwargs)
        events
```


12 flow of columns

- Columns are
- produced on demand
- read only if required
- overlayed \& aliased to mimic coherent array !

- Columns are
- produced on demand
- read only if required
- overlayed \& aliased to mimic coherent array !

- Columns are
- produced on demand
- read only if required
- overlayed \& aliased to mimic coherent array !
- Existing columns
- are not reproduced
columns merged! only in memory for histogramming

E

- can be shared across groups
- NB
- Task \neq jobs \rightarrow jobs can run multiple tasks
- Example producers in backup
- IO description in backup

Base Stack

micromamba with conda-forge packages
\rightarrow contains all required non-python packages, rarely updated (python3.9, bash/zsh, git, gfal2)
"cf" Sandbox
Relocatable python virtual env
\rightarrow All python packages needed to run tasks,
moderately updated
(luigi, law, pyyaml)

Task sandboxes

Any type: venv, cmssw subshell, docker, ...
\rightarrow Python packages to run a specific task,

CMSSW
(subshell)
(e.g. awkward, numpy, tensorflow, ...)

Example: muon weight producer (as shown earlier)

```
@producer(
    uses={
    },"nMuon", "Muon.pt", "Muon.eta",
    },
    produces={
        "muon_weight", "muon_weight_up", "muon_weight_down",
    },
    # only allowed on mc
    mc_only=True,
def muon_weights(
    self: Producer,
    events: ak.Array,
    muon_mask: ak.Array | type(Ellipsis) = Ellipsis,
> ak.Array
    |" ...Creates muon weights using the correctionlib. ./
    # flat absolute eta and pt views
    abs_eta = flat_np_view(abs(events.Muon.eta[muon_mask]), axis=1)
    pt = flat_np_view(events.Muon.pt[muon_mask], axis=1)
    # loop over systematics
    for syst, postfix
        ("sf", ""),
        ("systup","_up"),
        ("systdown", "_down"),
    ]:
        sf_flat = self.muon_sf_corrector(self.year, abs_eta, pt, syst)
        # add the correct layout to it
        sf = layout_ak_array(sf_flat, events.Muon.pt[muon_mask])
        (sf, over atl muons per event
        weight = ak.prod(sf, axis=1, mask_identity=False)
        events = set_ak_column(events, f"muon_weight{postfix}", weight, value_type=np.float32)
    return events
```

@producer decorator will create a class muon_weights
Example: muon weight producer (as shown earlier)
uses declares columns that should be read
@producer(
@producer
\}, "nMuon", "Muon.pt", "Muon.eta",
produces=\{
"muon_weight", "muon_weight_up", "muon_weight_down",
f, only allowed on me
produces declares columns to be written
only allowed on mc
Additional flags enable during checks, e.g.
def muon_weights(
self: Producer,

- mc_only (bool), data_only (bool)
- nominal_only (bool), shifts_only (set[str])
muon_mask: ak.Array | type(Ellipsis) = Ellipsis,
\rightarrow **kwargs,
-> ak.Array:
\# flat absolute eta and pt views
Wrapped function becomes the main callable of the class \&
abs_eta = flat_np_view(abs(events.Muon.eta [muon_mask]), axis=1) always should at least accept events and $* *$ kwargs
\# loop over systematics
for syst, postfix in
("sf", ""),
("systup", "_up"),
("systdown", "_down"),
Use set_ak_column to conveniently add new columns
sf_flat = self.muon_sf_corrector(self.year, abs_eta, pt, syst)
\# add the correct layout to it
sf = layout_ak_array(sf_flat, events.Muon.pt [muon_mask])
Return all events
\# create the product over all muons per event
weight = ak.prod(sf, axis=1, mask_identity=False)
(selectors: return also a SelectionResult)
@producer decorator will create a class muon_weights
Example: muon weight producer (as shown earlier)
uses declares columns that should be read
@producer(
@prose
\} , ~ " M u o n " , ~ " M u o n ~ . p t " , ~ " M u o n . e t a " , ~
produces=\{
"muon_weight", "muon_weight_up", "muon_weight_down",
\#, only allowed on mc
produces declares columns to be written

Additional flags enable during checks, e.g.
def muon_weights(
self: Producer,

- mc_only (boot), data_only (boot)
- nominal_only (boot), shifts_only (set[str])
muon_mask: ak.Array | type(Ellipsis) = Ellipsis,
\rightarrow **kwargs,
-> ak.Array:
\# flat absolute eta and pt views
Wrapped function becomes the main callable of the class \&
abs_eta = flat_np_view(abs(events.Muon.eta [muon_mask]), axis =1)
pt = flat_np_view(events.Muon.pt [muon_mask], axis=1)
always should at least accept events and **kwargs
\# loop over systematics
for syst, postfix in [
for syst, postfix
("sf", ""),
("systup", "_up"),
("systdown", "_down"),
Use set_ak_column to conveniently add new columns
]:
sf_flat = self.muon_sf_corrector(self.year, abs_eta, pt, syst)
\# add the correct layout to it
sf = 'ayout_ak_array(sf_flat, events.Muon.pt [muon_mask])
Return all events
(selectors: return also a SelectionResult)

\# create the product over all muons per event
weight = ak.prod(sf, axis=1, mask_identity=False)
\# store it
events = set_ak_column(events, f"muon_weight\{postfix\}", weight, value_type np.float32)
events
Where does the muon_sf_corrector come from?
- From previous slide: "Wrapped function becomes the main callable of the class"
\rightarrow Called for every chunk of events during processing
- But
- How to setup objects before the actual event processing?
- How to define a custom dependency? (i.e., task(s) on whose outputs the producer depends)

- From previous slide: "Wrapped function becomes the main callable of the class"
\rightarrow Called for every chunk of events during processing
- But
- How to setup objects before the actual event processing?
- How to define a custom dependency? (i.e., task(s) on whose outputs the producer depends)

- Three additional hooks

- init(self) -> None
- Method called as soon as producer registered by a task
\triangleright Receives important task variables via self (requested dataset, shift, ...)
- requires(self, reqs: dict) -> None
- Method called when task declares its dependcies
\triangleright Allows injecting custom dependencies into reqs that will be resolved by luigi
- setup(self, reqs: dict, inputs: dict, reader_targes: dict) -> None
- Method called in task's run() once before loop over event chunks
Δ Receives reqs defined before and corresponding inputs

\triangleright Allows setting up objects to be used in main callable

16 Writing your own producer (calibrator, selector, ...) (3)

- init(self) -> None

```
@jer.init
aet Jer_Init(self: Calibrator) -> None:
    if self.propagate_met:
        self.uses |= {
        "MET.pt", "MET.phi",
    }
    self.produces |= {
        "MET.pt", "MET.phi", "MET.pt_jer_up", "MET.pt_jer_down", "MET.phi_jer_up",
        "MET.phi_jer_down", "MET.pt_unsmeared", "MET.phi_unsmeared",
    }
```

from calibration/cms/jets.py

- requires(self, reqs: dict) -> None

@muon_weights.requires

det muon_weights_requlres(self: Producer, reqs: dict) \rightarrow None: from columnflow.tasks.external import BundleExternalFiles reqs["external_files"] = BundleExternalFiles.req(self.task)
from production/cms/muon.py

- setup(self, reqs: dict, inputs: dict, reader_targes: dict) -> None

@muon_weights.setup

aet muon_weignts_setup(self: Producer, reqs: dict, inputs: dict, reader_targets: InsertableDict) -> None: bundle = reqs["external_files"]

\# create the corrector

correctionlib.highlevel.Correction._call__ = correctionlib.highlevel.Correction.evaluate correction_set = correctionlib. CorrectionSet. from_string(
self.get_muon_file(bundle.files).load(formatter="gzip"). decode("utf-8"),
)
corrector_name, self.year = self.get_muon_config()
self.muon_sf_corrector = correction_set[corrector_name]


```
> law run cf.PlotVariables1D\
    --version dev1 \
    --datasets hh_bbtautau
    --calibrators jec \
    --selector full \
    --producers all_weights \
    --variables jet1_pt \
    --shift tauid_up
```

- Handling of systematics
- fully outsourced to task dependency resolution
- efficient, no unnecessary computations
- executable with high parallelism

- Python framework for vectorized, columnar HEP analysis with nano-like inputs
- Mostly experiment agnostic core
- Fully orchestrated \& automated
- Intermediate outputs
- Efficient through on-demand column production \& retrieval
- Able to incorporate any remote resource

- Checks $15 / 17$ "ideal workflow"items of CMS ATTF report (Sec. 4, backup)
- Vast Python (HEP) community and tool landscape is key
- Currently pushing for extensive documentation release
- Feedback still highly appreciated !
- github.com/columnflow, columnflow.rtfd.io

columnflow technicalities

- Case 1: Create histograms

■ law run cf.CreateHistograms --dataset tt \}
--producers my_features --variables jet*

- Loads default columns from "MergeReducedEvents" plus columns created by a producer called "my_features"

```
@producer(
    uses={"Jet.pt", "Jet.phi"},
    produces={"Jet.px", "Jet.py"},
def my_features(self: Producer, events: ak.Array, **kwargs) -> ak.Array:
    events = set_ak_column_f32(events, "Jet.px", events.Jet.pt * np.cos(events.Jet.phi))
    events = set_ak_column_f32(events, "Jet.py", events.Jet.pt * np.sin(events.Jet.phi))
    return events
```


- Case 1: Create histograms

■ Law run cf.CreateHistograms --dataset tt \}
--producers my_features --variables jet*

- Loads default columns from "MergeReducedEvents" plus columns created by a producer called "my_features"

```
@producer(
    uses={"Jet.pt", "Jet.phi"},
    produces={"Jet.px", "Jet.py"},
def my_features(self: Producer, events: ak.Array, **kwargs) -> ak.Array:
    events = set_ak_column_f32(events, "Jet.px", events.Jet.pt * np.cos(events.Jet.phi))
    events = set_ak_column_f32(events, "Jet.py", events.Jet.pt *-np.sin(events.Jet.phi))
        events
```

- Case 2: Create different histograms

■ law run cf.CreateHistograms --dataset tt \}
--producers my_features,event_shapes --variables jet*

- Loads default columns from "MergeReducedEvents" plus columns created producers "my_features" and "event_shapes"

```
@producer(
    uses={"..."}
    produces={"..."},
)
def event_shapes(self: Producer, events: ak.Array, **kwargs) >> ak.Array:
    events = set_ak_column_f32(events, "fox_wolfram1", ...)
    events = set_ak_column_f32(events, "subjettiness", ....)
    `..'
        events
```

- Only processes "event_shapes", reuses columns from "my_features"

Layering of columns

e.g. in SelectEvents

Updated columns (by CalibrateEvents)

Original columns (from NanoAOD)

Combined columns

- Each task handles a single input in one* process (* or more if needed)
- Single input = potentially multiple files with different columns for the same events
- Orchestration allows processing on any resource
- Highly parallel when running over all inputs
- Loop over event chunks in single thread, offload IO waits to thread pool

lazy loading

main thread

- Each task handles a single input in one* process (* or more if needed)
- Single input = potentially multiple files with different columns for the same events
- Orchestration allows processing on any resource
- Highly parallel when running over all inputs
- Loop over event chunks in single thread, offload IO waits to thread pool

Straight-forward integration of dask_awkward
\rightarrow Map chunks to partitions
\rightarrow compute() partitions in thread-pool
\rightarrow Single-node dask graph
\rightarrow Provide result to main thread
\square F1.1 Executable in "one go"
\square F1.2 Output intermediate results on demand
\square F1.3 Identify and rerun only necessary components
\square F1.4 Composition of columns to easy reuse / sharing
\square F1.5 Reproducibility via CI/CD
\square F1.6 Version checkpointing
\square F1.7 Support for custom NANO inputF2.1 Non-imperative paradigmF2.2 Physics object representation for NANO objects
\square F2.3 Seamless handling of systematic uncertainties
\square F2.4 Automatic datacard writing
\boxminus F2.5 Analysis results in different formats (datacards, pyhf workspace, HEPData, ...)
\square F2.6 Export to / import from dedicated, static workflow language
F2.7 Workflow configuration separated from analysis codeF2.8 Multidimensional histogramsF3.1 Resource agnosticismF3.2 Easily scalable (local, multi-core, batch)

> law \& luigi

- Portability: Does the analysis depend on ...
- where it runs?
- where it stores data?
\triangleright Execution/storage should not dictate code design!
- Reproducibility: When a postdoc / PhD student leaves, ...
- can someone else run the analysis?
- is there a loss of information? Is a new framework required? ■ Dependencies often only exist in the physicists head!

HICondur
 High Throughput computing

- Preservation: After an analysis is published
- are people investing time to preserve their work?
- can it be repeated after O (years)?
\triangleright Daily working environment should provide preservation features out-of-the-box!

- Personal experience: $2 / 3$ of "analysis" time for technicalities, $1 / 3$ left for physics
\rightarrow Physics output doubled if it were the other way round?

- Most analyses are both large and complex
- Structure \& requirements between workloads mostly undocumented
- Manual execution \& steering of jobs, bookkeeping of data across SEs, data revisions, ...
\rightarrow Error-prone \& time-consuming

- In the following
\rightarrow Approach complexity with

\rightarrow Enabling large-scale with
law

Tailored systems

- Structure "iterative", a-priori unknown
- Dynamic workflows, fast R\&D cycles
- DAG with arbitrary dependencies
- Incorporate any existing infrastructure
- Use custom software, everywhere

Wishlist for end-user analyses

- Structure known in advance
- Workflows static \& recurring
- One-dimensional design
- Special production infrastructure
- Homogeneous software requirements
\rightarrow Requirements for HEP analyses mostly orthogonal
- Python package for building complex pipelines
github.com/spotify / luigi
- Development started at Spotify, now open-source and community-drive

\bigcirc Watch -	493	* Unstar	15.2k	\&゚ Fork	2.3k

- Luigi's execution model is make-like

1. Create dependency tree for triggered task
2. Determine tasks to actually run:

- Walk through tree (top-down)
- For each path, stop if all output
- Only processes what is really necessary
- Scalable through simple structure
- Error handling \& automatic re-scheduling

[^0]```
reco.py
import luigi
from my_analysis.tasks import Selection
class Reconstruction(luigi.Task):
 dataset = luigi.Parameter(default="ttH")
 def requires(self):
 return Selection(dataset=self.dataset)
 def output(self):
 return luigi.LocalTarget(f"reco_{self.dataset}.root")
 def run(self):
 inp = self.input() # output() of requirements
 outp = self.output()
 # perform reco on file described by "inp" and produce "outp"
 .,.
```

> python reco.py Reconstruction --dataset ttbar

```
reco.py
import luigi
from my_analysis.tasks import Selection
```

Parameter object on class-level
class Reconstruction(luigi.Task):
string on instance-level
dataset $=$ luigi.Parameter(default="ttH")
def requires(self):
return Selection(dataset=self.dataset)
def output(self):
return luigi. LocalTarget(f"reco_\{self.dataset\}. root")
def run(self): $\quad$ Encoding parameters into
inp = self.input() \# output() of requirements
outp $=$ self.output()
\# perform reco on file described by "inp" and produce "outp"
.,


- law: extension on top of luigi (i.e. it does not replace luigi)
- Software design follows 3 primary goals:

1. Experiment-agnostic core (in fact, not even related to physics)
luigi analysis workflow
2. Scalability on HEP infrastructure (but not limited to it)
3. Decoupling of run locations, storage locations \& software environments

- Not constrained to specific resources
$\triangleright$ All components interchangeable
- Toolbox to follow an analysis design pattern
- No constraint on language or data structures
$\rightarrow$ Not a framework
- Most used workflow system for analyses in CMS
- $\mathrm{O}(20)$ analyses, $\mathrm{O}(60-80)$ people
- Central groups, e.g. HIG, TAU, BTV


## 1. Job submission

- Idea: submission built into tasks, no need to write extra code
luígi analysis workflow
- Currently supported job systems: HTCondor, LSF, gLite, ARC, Slurm, CMS-CRAB
- Mandatory features such as automatic resubmission, flexible task $\leftrightarrow$ job matching, job files fully configurable at submission time, internal job staging when queues are saturated, ...
- From the htcondor_at_cern example:

```
lxplus129:law_test > law run CreateChars --workflow htcondor
INFO: [pid 30564] Worker Worker(host=lxplus129.cern.ch, username=mrieger) running
 CreateChars(branch=-1, start_branch=0, end_branch=26, version=v1)
going to submit 26 htcondor job(s)
submitted 1/26 job(s)
submitted 26/26 job(s)
14:35:40: all: 26, pending: 26 (+26), running: 0 (+0), finished: 0 (+0), retry: 0 (+0), failed: 0 (+0)
14:37:10: all: 26, pending: 0 (+0),
14:37:40: all: 26, pending: 0 (+0),
14:38:10: all: 26, pending: 0 (+0), running: 0 +0), finished: 26 (+10), retry: 0 (+0), failed:0
INFO: [pid 30564] Worker Worker(host=lxplus129.cern.ch, username=mrieger) done!
lxplus129:law_test >

\section*{2. Remote targets}
- Idea: work with remote files as if they were local
luigi analysis workflow
- Remote targets built on top of GFAL2 Python bindings
\(\triangleright\) Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
- API identical to local targets
! Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)
- Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

\section*{"FileSystem" configuration}
```


# law.cfg

[wlcg_fs]
base: root://eosuser.cern.ch/eos/user/m/mrieger

```
- Base path prefixed to all paths using this "fs"
- Configurable per file operation (stat, listdir, ...)
- Protected against removal of parent directories
2. Remote targets
- Idea: work with remote files as if they were local
luigi analysis workflow
- Remote targets built on top of GFAL2 Python bindings
\(\triangleright\) Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
- API identical to local targets
! Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)
- Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

Conveniently reading remote files
```


# read a remote json file

target = law.WLCGFileTarget("/file.json", fs="wlcg_fs")
with target.open("r") as f:
data = json.load(f)

```
2. Remote targets
- Idea: work with remote files as if they were local
luigi analysis workflow
- Remote targets built on top of GFAL2 Python bindings
\(\triangleright\) Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
- API identical to local targets
! Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)
- Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

Conveniently reading remote files
```


# read a remote json file

target = law.WLCGFileTarget("/file.json", fs="wlcg_fs")

# use convenience methods for common operations

data = target.load(formatter="json")

```
2. Remote targets
- Idea: work with remote files as if they were local
luigi analysis workflow
- Remote targets built on top of GFAL2 Python bindings
\(\triangleright\) Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
- API identical to local targets
! Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)
- Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

Conveniently reading remote files
```


# same for root files with context guard

target = law.WLCGFileTarget("/file.root", fs="wlcg_fs")
with target.load(formatter="root") as tfile:
tfile.ls()

```
2. Remote targets
- Idea: work with remote files as if they were local
luigi analysis workflow
- Remote targets built on top of GFAL2 Python bindings
\(\triangleright\) Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
- API identical to local targets
! Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)
- Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...

Conveniently reading remote files
```


# multiple other "formatters" available

target = law.WLCGFileTarget("/model.pb", fs="wlcg_fs")
graph = target.load(formatter="tensorflow")
session = tf.Session(graph=graph)

```

\section*{2. Remote targets}
- Idea: work with remote files as if they were local
- Remote targets built on top of GFAL2 Python bindings
\(\triangleright\) Supports all WLCG protocols (XRootD, WebDAV, GridFTP, dCache, SRM, ...) + DropBox
- API identical to local targets
! Actual remote interface interchangeable (GFAL2 is just a good default, fsspec integration easily possible)
- Mandatory features: automatic retries, local caching (backup), configurable protocols, round-robin, ...
```

def run(self):
\# get the input to this task, which is a *.gz file
\# (the output of the requirements)
inp = self.input()
\# create the correction set
import correctionlib
correction_set = correctionlib.CorrectionSet.from_string(
inp.load(formatter="gzip"),
)

```

3. Environment sandboxing
- Diverging software requirements between typical workloads
luigi analysis workflow is a great feature / challenge / problem
- Introduce sandboxing:
\(\triangleright\) Run entire task in different environment
- Existing sandbox implementations:
- Sub-shell with init file (e.g. for CMSSW)
- Virtual envs
\(\triangleright\) Docker images
\(\triangleright\) Singularity images

docker::imgA anteence

singularity::cc7

```


# reco.py

import luigi
from my_analysis.tasks import Selection
class Reconstruction(luigi.Task):
dataset = luigi.Parameter(default="ttH")
def requires(self):
return Selection(dataset=self.dataset)
def output(self):
return luigi.LocalTarget(f"reco_{self.dataset}.root")
def run(self):
inp = self.input() \# output() of requirements
outp = self.output()
\# perform reco on file described by "inp" and produce "outp"
:."

```
```


# reco.py

import luigi
import law
from my_analysis.tasks import Selection
class Reconstruction(law.Task):
dataset = luigi.Parameter(default="ttH")
def requires(self):
return Selection(dataset=self.dataset)
def output(self):
return law.LocalFileTarget(f"reco_{self.dataset}.root")
def run(self):
inp = self.input() \# output() of requirements
outp = self.output()
\# perform reco on file described by "inp" and produce "outp"

```
 -••
```


# reco.py

import luigi
import law
from my_analysis.tasks import Selection
class Reconstruction(law.Task, law.HTCondorWorkflow):
dataset = luigi.Parameter(default="ttH")
def requires(self):
return Selection(dataset=self.dataset)
def output(self):
return law.LocalFileTarget(f"reco_{self.dataset}.root")
def run(self):
inp = self.input() \# output() of requirements
outp = self.output()
\# perform reco on file described by "inp" and produce "outp"
\#:

```
> law run Reconstruction --dataset ttbar --workflow htcondor
```


# reco.py

import luigi
import law
from my_analysis.tasks import Selection
class Reconstruction(law.Task, law.HTCondorWorkflow):
dataset = luigi.Parameter(default="ttH")
def requires(self):
return Selection(dataset=self.dataset)
def output(self):
return law.WLCGFileTarget(f"reco_{self.dataset}.root")
def run(self):
inp = self.input() \# output() of requirements
outp = self.output()
\# perform reco on file described by "inp" and produce "outp"

```
 -••
> law run Reconstruction --dataset ttbar --workflow htcondor
```


# reco.py

import luigi
import law
from my_analysis.tasks import Selection
class Reconstruction(law.SandboxTask, law.HTCondorWorkflow):
dataset = luigi.Parameter(default="ttH")
sandbox = "docker::cern/cc7-base"
def requires(self):
return Selection(dataset=self.dataset)
def output(self):
return law.WLCGFileTarget(f"reco_{self.dataset}.root")
def run(self):
inp = self.input() \# output() of requirements
outp = self.output()
\# perform reco on file described by "inp" and produce "outp"
\#:"

```
> law run Reconstruction --dataset ttbar --workflow htcondor

\section*{- CLI}
> law run Reconstruction --dataset ttbar --workflow htcondor
- Full auto-completion of tasks and parameters

\section*{- Scripting}
- Mix task completeness checks, job execution \& input/output retrieval with custom scripts
- Easy interface to existing tasks for prototyping

\section*{- Notebooks}
```

from analysis.tasks import Selection
import akward as ak

# create the task and ensure it's complete

task = Selection(dataset="ttH_bb", version="v3", shift="nominal")
task.law_run() < _

# read the selected events (a . parquet file)

events = task.output().load(formatter="awkward")

# get the number of jets per event

n_jets = ak.num(events.Jet, axis=1)
print(n_jets)

```

In
```

[5]: %law run ShowFrequencies --print-status -1
print task status with max_depth -1 and target_depth 0
> ShowFrequencies(slow=False)
_1 > MergeCounts(slow=False)
LocalFileTarget(fs=local_fs, path=$DATA_PATH/chars_merged.json)
                existent
            > CountChars(file_index=1, slow=False)
                LocalFileTarget(fs=local_fs, path=$DATA_PATH/chars_1.json)
existent
-3 > FetchLoremIpsum(file_index=1, slow=False)
LocalFileTarget(fs=local_fs, path=\$DATA_PATH/loremipsum_1.txt)
existent

```
- Print character frequencies in the "loremipsum" placeholder text (from examples/loremipsum)
- Fetch 6 paragraphs as txt files from some server
\(\triangleright\) Count character frequencies and save them in json
\(\triangleright\) Merge into a single json file
\(\triangleright\) Print frequencies

- Sowing CLI usage in the following, but

Q launch binder
for the notebook version
order
- Pythonic class collection to help structuring CMS metadata
- Provides programmatic access to and relations between various entities
\begin{tabular}{lc}
Name & \multicolumn{1}{c}{ Purpose } \\
\hline Analysis & Represents the central object of a physics analysis. \\
\hline Campaign & Provides data of a well-defined range of data-taking, detector alignment, MC settings, datasets, etc. \\
\hline Config & Holds analysis information related to a campaign instance (most configuration happens here!). \\
\hline Dataset & Definition of a dataset, produced for / measured in a campaign. \\
\hline Process & Phyiscs process with cross sections for multiple center-of-mass energies, labels, etc. \\
\hline Channel & Analysis channel, often defined by a particular decay resulting in distinct final state objects. \\
\hline Category & Category definition, (optionally) within the phase-space of an analysis channel. \\
\hline Variable & Generic variable description providing expression and selection statements, titles, binning, etc. \\
\hline Shift & Represents a systematic shift with a name, direction and type. \\
\hline
\end{tabular}

- Examples
```

In [3]: dataset_ttH.get_process("ttH").get_xsec(ecm=13)
Out[3]: 0.5071 -0.0465532 (scale)

```
```

In [12]: cfg.get_variable("jet1_px").get_full_title(root=True)
Out[12]: 'jet1_px;Leading jet p_{x} / GeV;Entries / 20.0 GeV'

```
- Heavily used throughout columnflow, common objects (datasets and cross-sections) centralized in \(\boldsymbol{Q}\) /uhh-cms/cmsdb
- Note: Moving code-base to CMS-wide project via CAT group, datasets \& cross-sections to be managed centrally```

[^0]: * in this case, the task is considered complete

